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Abstract—Modern parallel programming requires a combina-
tion of different paradigms, expertise and tuning, that correspond
to the different levels in today’s hierarchical architectures. To
cope with the inherent difficulty, ORWL (ordered read-write locks)
presents a new paradigm and toolbox centered around local or
remote resources, such as data, processors or accelerators. ORWL
programmers describe their computation in terms of access to
these resources during critical sections. Exclusive or shared access
to the resources is granted through FIFOs and with read-write
semantic. ORWL partially replaces a classical runtime and offers
a new API for resource centric parallel programming.

We successfully ran an ORWL benchmark application on dif-
ferent parallel architectures (a multicore CPU cluster, a NUMA
machine, a CPU+GPU cluster). When processing large data
we achieved scalability and performance similar to a reference
code built on top of MPI+OpenMP+CUDA. The integration of
optimized kernels of scientific computing libraries (ATLAS and
cuBLAS) has been almost effortless, and we were able to increase
performance using both CPU and GPU cores on our hybrid
hierarchical cluster simultaneously. We aim to make ORWL a
new easy-to-use and efficient programming model and toolbox
for parallel developers.

Index Terms—resource centered computing; read-write locks;
clusters; accelerators; GPU; experiments; performance;

I. INTRODUCTION AND OVERVIEW

Recent years have seen an increasing diversification in com-
puting architectures and software in the attempt to cope with
parallelism. Parallelism is crucial to deliver the performance
that medium and large scale applications nowadays require, but
usually still demands a lot of design, programming and mainte-
nance effort. Models and tools for parallel or distributed com-
puting are multiple, most commonly used seem to be different
forms of CPU threads (POSIX [1], OpenMP [2], TBB [3]),
accelerator threads specific to NVIDIA GPU (CUDA [4])
or more generic (OpenCL [5], OpenACC [6]), and message
passing (MPI [7]). Some low level implementations for vector
processing units (SSE or AVX [8]) are also used by expert
communities to develop vector computing libraries on CPUs.
Less commonly used in performance critical contexts are
functional programming approaches [9], modeling within the
BSP and similar models [10], software or hardware transac-
tion models [11], resource oriented architectures (ROA) [12],
skeletons [13] or map reduce [14].

A current trend to facilitate parallel code development
consists in using optimized scientific libraries and directive-

based parallel programming languages. A greater number of
developers is capable to design and to implement parallel
applications using these paradigms. Sophisticated runtimes
may then optimize each parallel run for a particular distributed
target architecture. This approach aims to improve the ease
of parallel developments, to reduce development times ([15],
[16]) and to augment portability. However, the expressiveness
of such development models can be insufficient for certain
algorithms, and the performance of the runtimes can be too
limited. In this case, lower level parallel programming tools
are required to attempt to compensate these limitations (see
Fig. 1 left). Then the risk is to provide too complex pro-
gramming models to the developers, requiring great efforts to
design and implement explicit task synchronization, resource
sharing, communications and computations overlapping. .. We
need programming models and tools for large communities
of developers, not for few high level experts in parallelism,
adapted to various kinds of problems and heterogeneous
parallel architectures.

We present a new paradigm and toolbox called ORWL
(ordered read-write locks) that changes the view on parallel
and distributed architectures in that it centers around the
resources that are necessary for a computation. Such resources
can be local to the process or remote, may be data (input,
output or intermediate results), memory, accelerators (GPU,
FPU, co-processors), program code (compiled offline or in
place) or network links and other communication features.
Effectively, ORWL partially replaces the classical runtime
level and offers a new API for resource centric parallel pro-
gramming that complements classical multi-thread and many
thread parallelization tools, see Fig. 1 right.

The aim is to have the programmer describe his computation
in terms of access to these resources during critical sections,
i.e. sections of code during which exclusive (write) or shared
(read) access to the resource is granted. That description of the
principal structure of the program is explicit and static, that
is it is provided through syntax, namely through annotated
blocks of the supporting programming language, here modern
C, see [17].

The access to these critical sections (and thus the modeled
resources) is regulated by simple rules: they combine a FIFO,
read-write semantics and mapping into a unique tool. This



uniform access to critical resources is a small restriction in
terms of expressiveness of a parallel program, but we will
show that this restriction is largely compensated by clear
semantics (that allow for stringent proofs) and better opti-
mization opportunities, in particular data prefetch and other
computation/communication overlap.

This paper is organized as follows. After relating ORWL
to previous work about parallel programming models and
support tools (Section II) we introduce ORWL (i.e program-
ming model and library interface) in Section III. That section
more specifically explains the structural information about the
application that is needed during execution startup and how
an individual computation and communication phase of an
application is organized. Then, in Section VI, as a principal
example we present experiments with a classical block-cyclic
matrix multiplication algorithm that runs on different cate-
gories of platforms ranging from small multi-core machines,
over machines with accelerators (GPU in that case), a cluster
of such machines, a multi-processor machine, and a large
multi-core cluster. We then conclude in Section VIIL.

II. RELATED WORK

The inherent programming models that underlie existing
parallel programming tools strongly characterize (or constrain)
the ease or burden of programming with them. Generally there
is a trade off between expressiveness and generality on one
side and resource usage and performance on the other. In
this section we will briefly review existing tools and compare
their choices concerning such a trade off to the one we are
proposing with ORWL.

Architectural hierarchy: Different parallel programming
models and tools designed to hierarchical parallel architec-
tures, consider different abstract hierarchical architectures:
with more or less details, with more or less parallelism levels.
Some models consider tasks spread on numerous levels in
the parallel architecture, such as the GPH language [18], that
refers to a set of clusters of multicore nodes including vector
accelerators. At the opposite, some models as HiDP [19] or
Chapel [20] consider tasks or a hierarchy of tasks running on
a set of interconnected computing nodes and view them as
a generic 1 or 2 level parallel architecture. ORWL can run
on a multi-level hierarchical architectures, but considers only
a set of multicore nodes and does not differentiate a cluster
or a cluster of clusters. Moreover, it allows to run different
sorts of compute kernels, designed for distinguished types
of cores including different vector accelerators, but does not
express vector parallelism or data transfers between CPU node
memory and accelerator memory. We consider that these issues
are relevant for compute kernel design and implementation,
and might require specific programming tools (such as CUDA
or OpenCL).

Architecture exposure: Some programming models aims
to virtualize and hide the core architecture. Ambitious ones,
such as HiDP [19], attempt to automatically generate efficient
compute kernel codes from a high level source code. Others
propose a comfortable interface with a kernel programming

language considered as highly portable. See for example
JavaCL!, a Java extension interfaced with OpenCL. However,
it is usually mandatory to redesign data storage and data
access strategy to get high performance kernels on different
core architectures, even with the same kernel programming
tool [21]. Yet other models prefer to clearly expose the core
architecture and encourage users to develop very optimized
kernels, such as Sequoia [22]. ORWL follows this approach:
users have to use adapted compute kernels for the different
core architectures they aim to use, by either referring to avail-
able highly optimized kernels (such as ATLAS or CuBLAS)
or by programming them directly with adapted low level
programming tools (CUDA, intrinsics, or OpenCL) to track
maximum performances.

Expressiveness for Parallelism: Modern parallel comput-
ing models create and manage fasks, but in very different ways.

o Chapel and Sequoia give a fine control of parallelism to
their users.

The programming model of Sequoia requires users to
define explicit inner and leaf tasks, and to create an
explicit task tree. An inner task uses a call-by-value-result
mechanism (some kind of improved RPC) to call and run
its subtasks in the tree, inducing vertical communications
and synchronizations [22].

Chapel’s model expresses parallelism explicitly with
forall loops and cobegin statements, and achieve
synchronization with future variables (locking when read
before to retrieve the result of a parallel computation) and
atomic regions [20].

o At the opposite, GPH and HiDP attempt to hide more
parallel programming details to users.

GPH is a functional language able to achieve parallel or
sequential evaluation of function arguments, and to define
evaluation strategies. Then some parallel skeletons can
be defined (like parallel-map and divide-and-conquer)
associated to task distribution strategies, and become high
level parallelism constructs [18].

HiDP supports some array operations and requires users
to define map blocks. They lead to an automatic exploita-
tion of data-parallelism inside the map blocks, encapsu-
lated by implicit synchronization barriers. However, some
directives can be added to map clauses by users to guide
the compiler and to improve the parallelization [19].

o Finally, most of modern parallel programming model
designed for hierarchical parallel architectures, support
and take advantage of nested parallelism.

ORWL first requires the user to create some fasks and
identify some resources (data, hardware, software entities).
Second, a planning of the resource accesses from the dif-
ferent tasks has to be explicitly described. Then a local
synchronization is automatically deduced for each task, and
task communications are automatically achieved on resources
accesses at runtime (see section III). So, ORWL parallelism
expressiveness remains explicit and based on tasks, but task

Ihttps://code.google.com/p/javacl/
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Figure 1.

synchronization and communications are resource-centric and
deduced from a task-resource graph description.

Data and computation locality: To minimize communi-
cations and achieve high performances, data and computation
locality is critical in a hierarchical parallel architecture. Dif-
ferent programming models allow to express this locality in
very various ways.

o GPH [18] allows to control the distance between a new
task and its parent task in a multi-level hierarchical
architecture.

o Chapel [20] requires to express the distribution of arrays
on the local memories of the different computing units.
Some distribution policies can be reused and improved
by application semantic knowledge.

e Sequoia [22] uses a task isolation approach. It runs tasks
by sending their data and retrieving their results . Users
can reduce the impact of the induced communication by
running tasks that work with local data or by using some
available efficient hardware block transfer mechanisms.
Locality is managed by the user.

e HiDP [19] runs on one node hosting CPU and GPU
cores, and faces a more focused locality issue. Data
locality management is also critic inside a GPU. HiDP
automatically generates several CUDA compute kernels
(for each data-parallel source routine) with different data
locality management and generates code to benchmark
these kernels, and finally point out the most efficient.

ORWL has been designed to identify resources, representing
data entities, hardware or software components, and then
to plan the accesses to these resources. ORWL allows to
differentiate local resources (only defined on the node hosting
the ORWL process of the ORWL task) from remote ORWL
processes hosted on another node. In fact, access operations
are presented identical to the programmer. Only during initial-
ization a differentiation between local and remote resources is
necessary. Then, at runtime, the library guarantees optimized
access to data resources: data that is already present locally
is directly visible in the address space of the task, no copy
operation is performed. Only when remote data is requested,
a network transfer is initiated in the background and the data
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is written into a buffer that is directly accessible to the task.
Again, no additional user space copy operation is necessary.

III. RESOURCE CENTERED MODELING WITH ORWL

In this section, we describe the foundations of the under-
lying synchronization model for ORWL. ORWL is based on
four major concepts that compose its model of computation,
tasks as units of program execution, resources as an abstraction
of data or hardware on which tasks interact, handles as
means of access of the tasks to these resources and critical
sections to organize access to resources and computation.
Major theoretical properties and proofs for them can be found
in [23]; in particular, there it is shown how to construct
iterative applications as a set of autonomous tasks such that
any execution has guarantees of liveness and fairness.

Tasks: For this model we suppose that a given set
of tasks 7 is to perform some computation and that data
dependencies exist between these tasks. We also suppose that
tasks may be recurrent, as part of an iterative application. Data
dependencies are distinguish read and write operations that
are not necessarily atomic. Therefore a dependency of task v
from task w is modeled by v reading data that w has written
previously. Hence, v may only be executed while w is not. Our
model provides a way to control the execution order of tasks
algorithmically based on their data dependencies. ORWL tasks
run concurrently, they are controlled autonomously trough
dependencies on resources (there is no centralized scheduler)
and they may be heterogeneous, that is each task may run a
different compute kernel designed to be executed on a CPU
core, on GPU cores or on other accelerators. ORWL tasks and
OS processes or threads are only loosely related. In fact, one
OS process can realize one or several tasks, while several OS
threads will be used by ORWL to realize a task.

Syntactically, an ORWL task is coded by the programmer as
a task data structure (taskType, say) that holds relevant data
for the task and a rask function that describes the processing
of the task. The ORWL library provides some syntactic sugar
to ease task declaration (ORWL_DEFINE_TASK(taskType))
and creation (taskType_create_task), but we will not go into
details of these tools, here.



Resources: To each task we attribute a fixed number of
control data structures coined resources. To each such resource
ORWL associates a FIFO that regulates the access to it. Such
an access can be done by any task 7, regardless whether it is
the local task to which the resource is attributed or any other
remote task.

« Prior to an access, 7 inserts a request in the FIFO of the
resource.

o Access is then granted, once that request becomes the
first element in the FIFO.

o In order to grant access to the following requests in the
FIFO, 7 releases the resource as soon as it may.

Such requests follow semantics of read-write locks: several
adjacent read request are served simultaneously, write requests
are exclusive.

By choice of the application, a resource is usually associated
to a data object; callbacks can be plugged onto such resources
in order to manage the correspondig data in heap memory
(default), files or memory segments. Other resources can be
associated to hardware entities such as CPUs, GPUs, or GPU
data streams.

Handles: Other than for classical tools such as POSIX
mutexes, semaphores or read-write locks, access to an ORWL
resource is not granted to a process, thread or task ID but
to a handle, a separate data structure. The access through a
handle of the resources is bound to the FIFO ordering as given
above; that is a task would use a handle to first place a request
for a resource, eventually wait until the lock is acquired, and
only then map the data of the resource into its address space.
Each task may hold several handles that are linked to the same
resource. By that a task that already has achieved access to
a resource may at the same time insert another handle in the
FIFO of the same resource for future access.

Critical Sections: With the help of handles, an ORWL
application then organizes itself by means of critical sections.
A critical section is a block of code that guarantees the
desired access to a resource, either exclusively or shared (see
Listing 1). The resource is locked on entry of the block and
if necessary data is mapped in the address space of the task;
on exit of the block, the lock on the resource is released and
the mapping into the address space is invalidated.

Listing 1. a critical section for handle myHandle

1 ORWL_SECTION(myHandle) {
2 S
33

Syntactically, a critical section is just a normal C compound
block that is prefixed by a macro that specifies the handle in
question:

Expressiveness and usability: The emphasis of the
ORWL programming model lies in its expressiveness of a
localized view of computation. For each task we initially have
to identify the data resources that it manages (see Listing 2)
and then to relate the access to these resources to the access
of other “neighboring” tasks, see Sec. IV-A below.

theBound

Figure 2.  Structure of the example. One of the four handles refers to a
remote resource. White arrow and ro represents a shared read access, black
arrow and rw an exclusive write access.

I ORWL_LOCATIONS_PER_TASK(theBlock , theBound);

After that, programming of the effective computation phase
(Sec. IV-B) is easy: ORWL guarantees that computation only
takes place if data is available, routes computed data as it is
needed by other tasks to them, and overall guarantees that the
computation is dead-lock free and fair. For a more detailed
explanation of these phases see below.

IV. AN INTRODUCTORY EXAMPLE

With the above features, programming of parallel algorithms
that achieves a domain decomposition and iterative computa-
tions is straightforward. ORWL allows to easily express an
algorithm that:

o decompose the data domain into blocks with a well

defined boundary relation between these blocks

 uses existing sequential code (or enhanced to use SIMD

units, like AVX ones) for the computation on each block

o stitches the results of computations together on the

boundary

Figure 2 illustrates this kind of algorithm by giving an ORWL
implementation strategy. Each task is associated with two local
resources, theBlock and theBound. In addition to its own
local resources, each task accesses the resource theBound
of the previous task.

For the example we will suppose that we have two applica-
tive functions as follows:

Listing 3. Function interfaces provided by the application
1 void block_computation(size_t n, double data[n],
2 size_t m, double const oBound[m]);
3
4 void update_boundary(size_t m, double myBound[m],
5 size_t n, double const data[n]);

Here block_computation is supposed to be the compute
kernel of the application. It receives the data block for compu-
tation in data and the boundary information that it needs from
other tasks in oBound. update_boundary in turn, is supposed
write an updated version of the boundary to myBound.

A. Initialization phase

Here we only describe a simplified usage mode that initial-
izes the control structures (handles) once in the beginning of
the application. Other modes are possible but their description



List NRWL task code: inifialization phas

// Scale the data resources
orwl_scale(sizeof (double[n]), theBlock);
orwl_scale(sizeof (double[m]), theBound);

// Link handles
orwl_handle2 myBlockComp

to the needed resources
ORWL_HANDLE2_INITIALIZER ;

N=H-BEN N N R e O S

orwl_handle2 myBlockUpd = ORWL_HANDLE2_INITIALIZER;
orwl_handle2 myBound = ORWL_HANDLE2_INITIALIZER ;
orwl_handle2 IneighBound = ORWL_HANDLE2_INITIALIZER;

11 // First (FIFO pos.
12 orwl_write_insert (
13 &myBlockComp,

0) we will write our data block

//< handle

14 ORWL_LOCATION( orwl_mytid , theBlock), //< resource ID
15 0); //< FIFO position
16

17 7/ at the same time (FIFO pos. 0) we will read from
18 // our left neighbor, if it exist

19 if (orwl_mytid > 0)

20 orwl_read_insert(

21 &lIneighBound , //< handle
22 ORWL_LOCATION( orwl_mytid —1, theBound), //< resource
23 0); //< position
24

25 // Then (FIFO pos.
26 orwl_write_insert (
27  &myBound,

1) we will have to update our bound

//< handle

28 ORWL_LOCATION( orwl_mytid , theBound), //< resource
29 1); //< position
30

31 // request our own block for reading

32 orwl_read_insert(

33 &myBlockUpd, //< handle

34 ORWL_LOCATION( orwl_mytid , theBlock), //< resource
35 1); //< position
36

37 // Synchronize with the other tasks

38 orwl_schedule ();

1 // Run the applicative computations

2 for (size_t orwl_phase = 0;

3 orwl_phase < maxPhases;

4 ++orwl_phase) {

5 // computation operation

6  ORWL_SECTION(&myBlockComp) {

7 doublex data = orwl_write_map(&myBlockComp );
8
9

ORWL_SECTION(& IneighBound) {

10 double constx 1Data = orwl_read_map(&lneighBound);
11 // do the real computation here

12 block_computation(n, data, m, 1Data);

13 }

14 }

15

16 // update operation
17 ORWL_SECTION(&myBlockUpd) {

18 double constx data = orwl_read_map(&myBlockUpd);
19

20 ORWL_SECTION(&myBound) {

21 doublex bData = orwl_write_map(&myBound);

22 update_boundary (m, bdata, n, data);

23 }

24 }

25 }

is outside the scope of this paper, and this simplified mode is
adapted to a large family of iterative computing algorithms.
The idea of this simplified mode is that all resources and
their access scheme are declared in an initial phase of the
application. This access scheme will implicitly synchronize the
tasks during the following computation phase. See Listing 4
for an example of such an initialization phase.

For this simplified initialization, a task specifies 4 parame-
ters R, p,rw,it for each handle that it uses:

R is the resource to which the handle refers,
P is the initial FIFO position,

rw is either read-only or write to describe the desired
concurrency of the access, and
it controls if a handle is used iteratively or not.
Syntactically,

it is given through the type of the handle (orwl_handle
or orwl_handle2),

rw is coded in the name of the function as “read” or
“write”,
R, p are parameters. R is specified through the use of

macro ORWL_LOCATION (lines 14, 22, 28, 34)
which uses a task ID and the local resource name
to identify a resource.
In the above example we can see how the concepts of local
and remote resources and handles differ. In fact, here each task
declares two local resources (Lst. 2) and during initialization

(Lst. 4 line 1) scales them to the appropriate size. Then
four handles (orwl_handle2, line 5) are used to access three
different resources: its own two and one of a neighbor.

o The requested access for the “own” block of data is once
for exclusive write (line 11) and once for a shared read
(line 31).

o Access to the boundary block of the neighboring task is
inclusive (line 17), only for reading.

e Access to the “own” boundary block is exclusive

(line 25).

In our example, the initial FIFO position p has two values
that correspond to the logical order in which a task will later
(Section IV-B) access the resources. There is a first phase
where a task reads data from a neighbor and updates its block
(FIFO position 0), and a second phase (FIFO position 1) where
the task then only needs to read its block and updates its
Boundary.

Each task finishes that initialization phase by a call to
orwl_schedule (line 37) which implements a global barrier for
all tasks and ensures that the FIFOs of all resources of all tasks
are initialized with requests that are consistent with the initial
4 parameters that were specified for all handles. In [23] it has
been proven how such an initialization can be implemented
such that the subsequent computation phases are guaranteed
to be deadlock free and fair.

B. Computation phase

During the computation phase, tasks usually access the re-
sources they specified during initialization within critical sec-
tions that restrict simultaneous access to a specified resource.
This restriction is inclusive or exclusive as the insertion of the
request was read or write, see Section III. Critical sections
of tasks that access different resources may be processed
concurrently without any additional restriction.




Syntactically the ORWL library implements a critical sec-
tion as prefix ORWL_SECTION(handle) to a normal block
of C code, see e.g Listing 5 line 6. Inside such a block it
may request access to the data of the handle by mapping
it into its address space, line 7. In the example we see two
separate operations, the first for the core of the computation,
starting line 5, the second for the update of the “boundary”,
starting line 16. In a more sophisticated implementation these
two operations of the task could easily be run by different
OS threads, but the presentation of that feature is beyond the
scope of this paper.

Once the task reaches a critical section it is blocked until
the resource is available. The associated data is accessible to
the task after mapping it explicitly. As long as execution stays
inside that block, this access may be simultaneously read-only
shared with other tasks, or exclusive if requested during the
initialization. Once execution leaves the section, the address
to which the data is mapped is invalidated and the lock on the
resource is released.

If the handle was declared to be used iteratively (using
orwl_handle2 data type), special care is taken to allow the
task to revisit the same critical section, again. Once the access
is granted to such a handle, a new request is automatically
appended to the FIFO of the resource. Thereby the system
ensures that the access to that same resource is granted
iteratively in the same initial FIFO ordering, and the iteration
loop, starting in line 2, proceeds predictably.

V. A BENCHMARKING EXAMPLE
A. Benchmark objectives and choices

As example code for the benchmarks, we chose to imple-
ment the well-known block cyclic algorithm for dense matrix
multiplication. The advantage of dense matrix multiplication
with this algorithm is that there exist very performing libraries
(for CPU and GPU) that can be used as subroutines to build
parallel or distributed implementations on top.

Using that algorithm, we have implemented a reference
version of a dense matrix product, using MPI, OpenMP and
CUDA programming tools, and ATLAS (for CPU compu-
tations) and CUBLAS (for GPU computations) as scientific
libraries for dense matrix multiplication. We have run both
this reference program and the ORWL version on our cluster
in order to measure the absolute and relative performances
achieved by ORWL.

B. Benchmark algorithm

We implemented a dense matrix product framework with
ORWL using a classical block-cyclic parallel algorithm. Each
ORWL process stores some fixed horizontal slices of A matrix,
some circulating vertical slices of B matrix, and computes
some fixed horizontal slices of C matrix. Figure 3 shows the
initial data stored in the first two ORWL processes. Node 1
stores the top slices of A and the left slices of B, and aims
to computes the top slices of C. Node 2 stores the next slices
of A, B and C. Then, each node is going to compute some

5 B slices 6B slices
Node 1: 5 tasks Node 2: 6 tasks Node Nd
/\ Interprocess A Intraprocess
task-comm. task-comm.

Figure 4. Circulation of the slices of matrix B between tasks, intra and inter
processes.

subpart of its slices of C, corresponding to the available slice
of B.

But in fact, each node is composed of several computing
resources (some CPU cores and sometimes an accelerator like
a GPU), and each resource is exploited by one or several
ORWL tasks (typically one task per resource). As ORWL
programming model is task-based, it is better to consider that
each task owns an horizontal slice of A with a thickness
depending on its computing power: the task run on a GPU
owns a larger slice than a task exploiting a CPU core. This
partitioning strategy allows to achieve a static load balancing
across all the computing resources. Each task owns also a
vertical slice of B, but all these slices have the same thickness
(see Figure 3). Finally, each task has to compute an horizontal
slice of C, corresponding to its slice of A.

Then, slices of B are going to circulate across a ring
of tasks, as illustrated on Figure 4. Task ¢ sends its B
slice to task ¢ + 1 ans receives a B slice from task ¢ — 1.
Data circulation between tasks located on different ORWL
processes are achieved by message passing on the intercon-
nexion network, while data circulation between tasks located
inside the same ORWL process are just some buffer pointer
exchanges. However, when the task in exploiting an hardware
accelerator, some data transfers are required to send the B
slice in the accelerator memory and to retrieve the result
from this memory (for example a GPU card memory). In
our current version, these data transfers are not managed by
ORWL, but are implemented and executed with the compute
kernel devoted to the accelerator.

ORWL proposes to use the same semantic and syntax (see
further) to express data circulation between tasks, while each
achievement depends on the relative locations of the involved
tasks. ORWL hides the exact implementation and execution
of the task communications, and optimizes their achievement
avoiding message passing and also memory copy when buffer
pointer exchanges is enough.

Finally, when a task has hosted all B slices in its data
circulation buffers, it has been able to compute all subparts
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Figure 3. Two node view of a heterogeneous matrix partition on several nodes with different capacity. The column slices of B are all of equal size. The

row slices of A are tuned to the capacity of the processing element (CPU core or accelerator chip).

of its slice of C. If we assume we have deployed a total
of T ORWL tasks to compute the C matrix slices, then
after T computation-circulation steps, C matrix computation
is achieved and B matrix will be stored again in its initial state
ready to be reused in another matrix operation).

C. ORWL implementation

We implemented the ORWL implementation of block
cyclic matrix multiplication with an additional tool called
orwl_circulate . In addition to the features of an orwl_handle2
as described previously, this automatically implements the
circulation of the corresponding buffers under the hood. The
simplified initialization of such a orwl_circulate is shown in
Listing 6. Here the overall management of buffers becomes
particularly simple: our algorithm only has one resource, the
circulating buffer, to worry about. In a standard implementa-
tion as our reference implementation (using MPI, OpenMP and
CUDA), several buffers (for current, previous and following
phase) have to be maintained.

Listing 6.  ORWIL initialization for circular buffer.

Listing 7. ORWI. matrix multiplication: iteration

for (size_t phase = 0; phase < orwl_nt; ++phase) {

1

2 /% Replace the data in B by the block that we received
3 the previous phase. */

4 ORWL_CIRCULATE_SECTION( circ , allocB) {

5 /% Obtain a pointer to the buffer in our virtual

6 address space. */

7 void constxrestrict curB = orwl_circulate_map (circ);
8

9 /% keep track of the current row of B that we

10 handle in this phase. We start with orwl_mytid
11 and then at each phase add one around the circle|.
12 */

13 size_t iB = (orwl_mytid + phase) % orwl_nt;

14 func —>mult(n0, nl, n2, iB, orwl_nt,

15 C, A, curB, transBuffer, context);

16 }

17 }

18 func—>output(n0, n2, orwl_nt, C, context);

1/« A chunk of matrix B will circulate among the tasks. */
2 orwl_circulate circB = ORWL_CIRCULATE_INITIALIZER ;
3
4 /% The initial scheduling is simple, here. We only use one
5 location per task, through which the matrix B will
6 circulate. %/
7 orwl_circulate_insert(&circB, locationB);
8
9 /x Now synchronize to have all requests inserted orderly
10 at the other end. */
11 orwl_schedule ();

Listing 7 then shows the compute phase of
the implementation. Similar to before, there is a

ORWL_CIRCULATE_SECTION that marks the block of
the critical section. Inside the critical section the application
maps the data into the address space (orwl_circulate_map).
Without the programmer having to worry, if possible this
“mapping” accesses data that a neighboring task had just used
in a previous phase through a pointer. If this is not possible
(the task is located in a different process on a different node)
the data is transferred behind the scenes.

The call to the compute kernel is then done through
func—>mult. Here this is a function pointer that can be used
to trigger different versions of the kernel, e.g. versions that
are adapted to a specific CPU or that use an accelerator. The
arguments to the function are (1) size and index information
about the matrices, (2) matrices C, A and curB, (3) an auxiliary
buffer as it might be needed by some of the kernels, and
(4) context information that might be needed to configure an
accelerator.

Another function func—>output is then called after the main
loop to retrieve the result of the computation. This function
might be empty if the computation took place on the CPU or
might perform a transfer from the accelerator RAM to main
RAM, if necessary.

The following points ensure that ORWL is a good choice
for such computations that are assembled using preexisting
compute kernels:

e The straightforward implementation with ORWL of our
block-cyclic parallel algorithm achieves a natural overlap
of communications and computations.

o The ORWL runtime avoids superfluous copy operations
as long as tasks are performed in the same address space.
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Figure 5. Gflop/s achieved on a constant size problem (5760 x 5760 matrices
of double precision data) using only the CPU cores of Cameron cluster

o The ORWL runtime ensures direct buffer to buffer com-
munication between different compute nodes.

o Without difficulties, we have been able to reuse some
home-grown compute kernel source codes.

o Similarly, we have easily called kernels of scientific
libraries: BLAS/ATLAS on CPU, and CUBLAS on GPU.

o All these kernels can be used intermixed on the appro-
priate parts of the heterogeneous platform. In particular,
CPU and GPU compute kernels can be run concurrently
and use the full computing capacity of the dual hardware.

VI. EXPERIMENTS
A. Testbeds

Most of our benchmarks we run on an experimentation
cluster Cameron of SUPELEC, with 16 nodes that are inter-
connected across a 10-Gbit Ethernet switch, an OmniSwitch
Alcatel 6900-X20-F, with up to twenty 10-Gbit/s ports. Each
node has an Intel Xeon E5-1650 processor at 3.2 GHz,
composed of 6 physical hyperthreaded CPU cores (12 logic
cores), and is equipped with 8 GiB of global DDR3 RAM
on a 1600MHz memory bus. Moreover, each node includes
a NVIDIA GeForce GTX580 (FERMI architecture) with full
double precision capacity, 512 CUDA cores and 1.5 GiB of
memory that is connected to its CPU across a Gen3 x16 PCle
bus.

We used other platforms for additional tests, that represent
different development or production context. First a laptop
machine, with 2 physical cores plus 2 hyperthreaded cores,
a multiprocessor-multicore machine LeMans with in total 24
cores at 800 MHz (located at the ICube lab) and a cluster
Pastel with up to 60 processor and 180 cores on the Grid5000
platform.

B. Scalability experiments

In order to evaluate the performance of ORWL, we run
some benchmarks on the Cameron cluster (up to 16 nodes,
see Section VI-A) using CPU cores, GPU cores, or both
(hybrid computing). All performance measurements are given
with the achieved number of floating point instructions per
second (flop/s), accounting two double precision instructions
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constant the execution time while increasing the number of computing nodes,
and using only the CPU cores of Cameron cluster

per multiply-add of a vector-vector product. We only show per-
formance measures based on ATLAS for CPU and CUBLAS
for GPU computations; evidently our home grown implemen-
tation of dense matrix multiplication has proven to be less
performing than these highly optimized libraries. Nevertheless,
their high performance is due to an extreme use of the
available hardware and is bound to arithmetic conditions of the
matrix sizes. In particular, some of the measurements below
show fluctuations that we blame on the varying divisibility
conditions when increasing matrix sizes.

Figure 5 shows performance measurements (in Gflop/s)
that were achieved by our matrix product implementations
(reference implementation and ORWL) on fixed size ma-
trices, namely 5760 x 5760 double precision data. The
MPI+OpenMP+Atlas code performs a bit better than ORWL
and reaches approximately 500 Gflop/s on CPU cores whereas
the ORWL code reaches only 360 Gflop/s. Both reference and
ORWL codes achieve poor scalability and don’t scale well
beyond 8 nodes: a finer decomposition of the input matrix
for a fixed sized problem leads to more and smaller message



between the increasing number of nodes. We conclude that
the parallelization overhead of the ORWL implementation
remains more important than for the reference code, and can
be improved, but that the scalability problem is the same for
both.

For larger problem sizes, Figure 6 then shows close perfor-
mances and good scalability achieved both by the reference
and the ORWL codes. This benchmark processes problems
with a data size that increases linearly with the number of
nodes: on P nodes it processes the maximum problem size
that can be stored in the total GPU memory of the P nodes.
Performance on the CPU is still not so close to the ideal
performance (see bottom part of Figure 6), but it increases
steadily and scales up to 16 nodes. Performance on the GPU
(upper part of Figure 6) is very close to the ideal performance:
it only deteriorates slightly when using 16 nodes.

The difference in the scalability when using CPU and GPU
cores can be explained by the communication overhead. When
computing on GPU cores, the CPU cores remain available to
perform the internode communication. Thus we can achieve
a very efficient overlap of computations and communications.
When computing on CPU cores, internode communications
and computations compete for CPU and for memory accesses,
leading to an imperfect overlap. We note that ORWL based
code is as efficient as the reference code when processing large
amount of data.

Figure 7 shows the performances achieved by ORWL based
and reference code on a benchmark with an intermediate size
increase. For a product of two matrices of size N performing
2- N1 floating point operations, a linear increase in N = k- P
in the previous benchmark (Figure 6) leads to increase the
amount of computation on each node ((2 - k'-5) - /P flop per
node on P nodes), and so to a total increase of the execution
time. The benchmark of Figure 7 keeps the amount of floating
operations constant on each node, by adjusting the increase of
the problem size to a sublinear function. A classical industrial
use case for this kind of benchmark consists in running
finer simulations on larger machines, but respecting the same
deadline as before. Figure 7 shows the performances of ORWL
based and reference codes. The performance increase for both
is suboptimal and fluctuating, due the arithmetic conditions on
the matrix sizes as mentioned above, and ORWL code remains
slower than reference code. But both codes still succeed to
increase their performances and to scale.

These three benchmarks show that the ORWL application
has a performance behavior that is similar to the reference
code: limited scalability and performance for fixed sized prob-
lems, increasing but sub-optimal performance for increasing
sized limited to a fixed amount of computation per node,
and strong scalability for saturating problem sizes. For later,
ORWL achieves very similar performance than the reference
code.

To complete the picture, Figures 8 and 9 present scalability
experiments on a multi-core processor (LeMans, one process,
up to 24 ORWL tasks) and on a cluster of multi-cores (Pastel,
one process with 4 ORWL tasks per node), respectively.

P

Gflop/s

ideal speedup
measurement -

1 2 4 6 8 12 16 20 24
ORWL tasks

Figure 8. Gflop/s achieved by using an increasing number of ORWL tasks
on LeMans with constant matrix size of 11520 X 11520 double and ATLAS
dgemm as compute kernel. Also shown is the achievable limit with an ideal
speedup.
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Figure 9. Gflop/s achieved on an increasing problem size on Pastel using

ATLAS dgemm as compute kernel. Also shown is the achievable limit on that
platform induced by the usable network bandwidth.

The first shows an almost perfect scaling, seemingly the
architecture copes well by having one compute task per core.

The second also shows a typical behavior as we should
expect on such a hierarchical architecture. If we take the
“60 x 4” curve as an example we can identify three different
performance ranges.

1) In a first range up to a matrix side of 10* elements for
this curve, network latency dominates the computation.
The parallelization doesn’t pay off, in the contrary, this
curve is below the one for “30 x 4” in that range. So
doubling the number of cores slows down execution,
here.

2) A second range (between 10* and 2-10* elements for the
“60 x 4” curve) is restricted by the available bandwidth,
in this case the total bandwidth of the network switch.
The performance is basically similar to that of “30 x 47,
the number of nodes that is used doesn’t influence much.

3) Then, in a third range above 2 - 104 elements the
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parallelism of the cores and the efficiency of the compute
kernel kicks in. Each core has sufficiently large data to
spend most of the time in computation. We approach a
peak performance of approximately 1 Tflop/s.

C. Hybrid computing

Many computing nodes in modern parallel architectures are
hybrid nodes, both with CPU cores and hardware accelerators
(like GPU cores). Our cluster Cameron realizes such an
architecture. The total computing power of all CPU cores of
each node of our cluster is not negligible, compared to the
computing power of the GPU of each node. Our benchmark
reaches 180 Gflop/s on one GPU (using CUBLAS kernel), and
12 Gflop/s on each CPU core (using ATLAS kernel). With 6
CPU cores we have a potential close to 72 Gflop/s on the
CPU, and a combined total for CPU and GPU close to 252
Gflop/s per node. So the maximum potential is 4 Tflop/s when
combining the 16 nodes of the cluster.

Due to its modularity, the ORWL code has been easily
extended to implement a hybrid matrix product; we just added
static load balancing between the GPU and each CPU core.
Then we conducted some experiments to determine the best
number of ORWL tasks to run on our 6-core CPU nodes, and
the best load balancing.

We have first benchmarked our hybrid matrix product on the
same problem sizes we used on GPU only (see Section VI-B
and Figure 6): the maximal problem size that can be stored
on GPU memory of the used nodes. Our experiment has
shown the most efficient solution was to run one ORWL task
to control GPU computing and one ORWL task per CPU
core: 1 + 6 ORWL tasks per node. The best load balancing
appears to depend on the number of used nodes and the
problem size, so dynamic load balancing could be envisioned
in the future to ease the parametrization of the execution.
The best performances that were achieved by our hybrid
implementation are shown in Figure 10: from 1 up to 10 nodes
using both CPU and GPU cores leads to significantly better

10

performances (see the green curves starting at 1 node). Beyond
12 nodes using GPU cores only is more efficient for the chosen
problem size, that do not contains enough computations to
efficiently use both CPU and GPU cores on more than 12
nodes.

However, when processing a very large problem ("XL"
curve), even larger than could be stored in the GPU memory,
the number of Gflop/s still increases. The second green curve
(in the top right of Figure 10) reaches a peak performance of
3.44 Tflop/s on 16 nodes, about 800 Gflop/s (30 %) more than
we achieved by using only the GPU processors and memory
for computation.

D. Results synthesis

Our experimentation campaign has shown our ORWL
matrix product application has achieved very good weak
scalability, with similar performances to the reference
MPI+OpenMP+CUDA implementation. But we have poor
strong scalability, compared to the reference code. We need
to improve our current implementation of ORWL for small
problem size. Finally, our approach of hybrid architecture
programming has been successful. However, a dynamic load
balancing mechanism has to be designed and implemented, in
order to avoid long tuning of each run.

VII. CONCLUSION AND FUTURE WORK

We presented a computational model for parallel and dis-
tributed algorithm design (ORWL) that is centered around
an abstract notion of resources that are meant to represent
key concepts in the design, implementation and execution
of an algorithm. They can represent blocks of data (input,
intermediate or output), software (e.g a specialized function) or
hardware (CPU, GPU, network card) entities. Resource access
and sharing is granted in critical sections through simple FIFO
strategies with read-write semantics.

A support environment and library for this model has been
implemented that is compatible with known low level paral-
lelization tools (OpenMP, CUDA) and allows to reuse existing
optimized kernels like ATLAS or cuBLAS. A sequence of
benchmarks with a block cyclic matrix multiplication has
been presented. It shows very good scaling properties that
are comparable to that of an optimized parallel reference
implementation. The advantage of the ORWL implementation
appears in particular when we use all available processing
units (CPU and GPU) on a cluster equipped with heteroge-
neous hardware: without changing the implementation of the
algorithm we are easily able to draw all available power from
such a platform.

In order to reach our goal to make ORWL a new easy-to-
use and efficient programming model and toolbox for parallel
developers, we aim to experiment ORWL on parallel appli-
cations requiring more complex communication schemes. Si-
multaneously we will continue to investigate hybrid computing
on hierarchical architectures including hardware accelerators.
The unmodified benchmark used in this paper already shows
promising results on Intel’s Xeon Phi platform, and we are



excited with the prospect to run it in on a cluster equipped
with such accelerators in the weeks to come.

As we succeeded to use both CPU and GPU cores with
a fine tuned static load balancing, the next step will consist
in developing a dynamic load balancing mechanism, without
increasing data transfers between CPU and GPU memories.
We plan to use different task queues that group tasks that
require common data. They will be pre-allocated to CPU
or GPU, and support work stealing from processors having
exhausted their task queues. Task queues will be modeled
as computing resources that will be accessed across critical
sections by ORWL.
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