
Chapter 1

Optimizing computing and energy
performances in heterogeneous
clusters of CPUs and GPUs

Stephane Vialle

SUPELEC - UMI GT-CNRS 2958 & AlGorille INRIA Project Team, France

Sylvain Contassot-Vivier

Lorraine University - Loria / AlGorille INRIA Project Team, France

Thomas Jost

ALICE and AlGorille INRIA Project Teams, France

1.1 Introduction . 2
1.2 Related works . 3
1.3 First experiments and basic model . 5

1.3.1 Testbed introduction and measurement methodology 5
1.3.2 Observation of experimental performances . 6
1.3.3 Relative performances of the CPU and GPU clusters 9
1.3.4 Basic modeling of CPU and GPU cluster performances 10
1.3.5 Need for predicting the best operating mode . 13
1.3.6 Interests and limits of the basic model, and need for a new one . 14

1.4 Measurement issues and alternative modeling approach 14
1.4.1 Measurement methodology . 15
1.4.2 Technical limitations of the measures . 16

1.5 Node level model . 17
1.5.1 Complete model . 18
1.5.2 Discussion on the importance to avoid benchmarking the target
application . 19
1.5.3 Simplified model . 19

1.6 Cluster level model . 21
1.6.1 Asynchronous application . 22
1.6.2 Synchronous application . 23

1.7 Synchronous and asynchronous distributed PDE solver 26
1.7.1 Computational model . 26
1.7.2 Multisplitting-Newton algorithm . 27
1.7.3 Inner linear solver . 28
1.7.4 Asynchronous aspects . 29

1.8 Experimental validation . 31
1.8.1 Testbed introduction and measurement methodology 31
1.8.2 Node level . 31
1.8.3 Cluster level: asynchronous mode . 35
1.8.4 Cluster level: synchronous mode . 35

1.9 Discussion on a model for hybrid and heterogeneous clusters 38

1

2 Optimizing performances in heterogeneous clusters

1.10 Perspectives: towards auto-adaptive executions . 39

1.1 Introduction

Today multicore CPU clusters and GPU clusters are cheap and extensi-
ble parallel architectures, achieving high performances with a wide range of
scientific applications. However, depending on the parallel algorithm used to
solve the addressed problem and on the available features of the hardware,
relative computing and energy performances of the clusters may vary. In fact,
modern clusters cumulate several levels of parallelism. Current cluster nodes
commonly have several CPU cores, each core supplying SSE units (Streaming
SIMD Extension: small vector computing units sharing the CPU memory),
and it is easy to install one or several GPU cards in each node (Graphics
Processing Unit: large vector computing units with their own memory). So,
different kinds of computing kernels can be developed to achieve computa-
tions on a same node, some for the CPU cores, some for the SSE units and
some others for the GPUs. And several combinations of those kernels can be
used considering:

1. a cluster of multicore CPUs

2. a cluster of GPUs

3. a cluster of multicore CPUs with SSE units

4. a hybrid cluster of both GPUs and multicore CPUs

5. a hybrid cluster of both GPUs and multicore CPUs with SSE units

Each solution exploits a specific hardware configuration and requires a specific
programming, and the different solutions lead to different execution times
and energy consumptions. Moreover, the optimal combination of kernel and
hardware configuration also depends on the problem and its data size.

Another aspect which impacts the performances lies in the communica-
tions. According to the algorithm used and to the chosen implementation,
communications and computations of the distributed application can overlap
or can be serialized. Overlapping communications and computations is a strat-
egy that is not adapted to every parallel algorithm nor to every hardware, but
it is a well-known strategy that can sometimes lead to serious performance
improvements. In that context, asynchronous parallel algorithms are known
to be very well suited. Asynchronous schemes present the great advantage
over their synchronous counterparts to perform an implicit overlapping of
communications by computations, leading to a better robustness to the inter-
connection network performances fluctuations and, in some contexts, to better

Optimizing performances in heterogeneous clusters 3

performances [4]. Moreover, although a bit more restrictive conditions apply
on their use, a wide family of scientific problems support them.

So, some problems can be solved on current distributed architectures us-
ing different computing kernels (to exploit the different available computing
hardware), with synchronous or asynchronous management of the distributed
computations, and with overlapped or serialized computations and communi-
cations. These different solutions lead to various computing and energy per-
formances according to the hardware, the cluster size and the data size. The
optimal solution can change with these parameters, and applications users
should not have to deal with these parallel computing issues.

The main goal in this field is to develop auto-adaptive multi-algorithms
and multi-kernels applications, in order to achieve optimal runs according to a
user-defined criterion (minimize the execution time, the energy consumption,
or minimize the energy-delay product...). A multi-target and multi-code pro-
gram should include several solutions (implementations) and should be able
to automatically select the right one, according to a criterion based on execu-
tion speed, on energy consumption or on a speed-energy trade-off. In order to
implement this kind of auto-selection of a hardware configuration to exploit
and code to run, it is necessary to design a computing and energy performance
model.

However, the development of this kind of auto-adaptive solutions remains
a real challenge as it requires an a priori knowledge of the behavior of each
software solution on each class of hardware. Obviously, it is not possible to col-
lect such information for every possible combination. Nonetheless, the design
of a model considering heterogeneous distributed architectures, computing
performances and energy performances could fill that gap. Such a design is
usually achieved by a theoretical analysis of the behaviors of the main classes
of parallel algorithms. Then, the result is commonly a model having several
parameters depending on the problem and algorithm (nature and data size)
but also on the hardware features. Those last information are obtained by the
use of generic benchmarks on the target systems.

In the following section, we present the feedback we got from our previous
experiments on clusters of CPUs and GPUs and we identify some pertinent
benchmarks and optimization rules which can be respectively used to feed a
model and to enhance the overall performances. Then, our methodology and
metrics for performance evaluation are presented in Section 1.4. Based on the
experience gained in our previous works together with a theoretical analy-
sis, a model of computing and energy performance is proposed in Section 1.5
and Section 1.6 and is validated in Section 1.8. All the tests are done with
a representative example of scientific computing algorithms, which is a PDE
solver detailed in Section 1.7. Finally, we conclude over the current degree of
development of fully auto-adaptive algorithms and the short and middle term
achievements that can be expected.

4 Optimizing performances in heterogeneous clusters

1.2 Related works

Many researches have been achieved to design energy performance models
of GPUs. They usually focus on modeling one GPU chip, or one GPU card.

In 2008, Rofouei et al.[21] introduce a new hardware and software moni-
toring solution (called LEAP-server), to achieve real-time measurement of the
energy consumption of the CPU chip, the GPU card and the PC motherboard.
Then the authors run some benchmarks and attempt to link computing per-
formances (execution times and speedup) to energy performances, and they
achieve fine measures exhibiting different energy consumptions in function of
the GPU memory used. GPUs have different memories, with different per-
formances in term of speed and energy consumption (see [17]). Finally, their
measurement solution and performance modeling aims at deciding whether
the computations has to be run on the CPU or on the GPU to optimize the
performances. In 2009, Ma et al.[20] use conventional hardware, classical elec-
trical power measurement mechanisms and functions of the NVIDIA toolkit
to measure the workload of the different components of the GPU. It leads
to fine measurement and complex workload and electrical power profiles of
different benchmark applications. Then, the authors run a statistical analysis,
with a Support Vector Regression model (SVR) trained on the benchmark
application profiles. The resulting SVR is used to predict the energy perfor-
mances of new applications in function of their workload profiles, in order to
automatically select CPU or GPU computing kernels.

SPRAT is a language designed by Takizawa et al.[22] to process some
streams on CPU or on GPU. It aims at reducing the energy consumption
without degrading the computing performances. A performance model is in-
troduced by the authors to take into account the execution times on CPU
and on GPU, the data transfer time between CPU and GPU, and the energy
consumption. The authors focus on the cost of data transfers, which can be
excessive and then lead to longer execution times on the GPU than on the
CPU. Some credits are introduced in SPRAT runtime. The amount of credits
increases when the GPU kernel execution appears to be efficient, and they
allow to take the risk of running another GPU kernel (instead of a CPU one).
This model and language seems especially suited to applications that require
frequent data transfers between CPU and GPU.

All these models and choice strategies between a CPU and a GPU ker-
nel have been designed to optimize the usage of one GPU card and one CPU
motherboard. However, our goal is to use a cluster of PCs with CPU and GPU
on each node. So, we decided to monitor the energy consumed by each node
(i.e. by each complete PC), and to optimize the global energy consumption
of our clusters (i.e. the energy required by the nodes and the interconnection
network). Moreover, we are not only interested in choosing the right kernel
(CPU or GPU kernel) run on each node, but also in determining the right op-

Optimizing performances in heterogeneous clusters 5

erating mode (typically between synchronous and asynchronous versions of a
parallel algorithm). The next section introduces our first parallel performance
model and experimental measures.

The choice between computing and energy performances can be relevant
when the fastest solution is not the less energy-consuming. A global perfor-
mance criterion can be required to achieve the right choices of computing
kernels and operating mode. An interesting global criterion is the Energy De-
lay Product (EDP) introduced in [16] in 1996. It is the product of the energy
consumption and the execution time: the two parameters we want to decrease.
Looking for the solution that minimizes their product can lead to a good com-
promise between computing and energy performances. We plan to include the
EDP in our future model, in order to track this compromise.

1.3 First experiments and basic model

In this section we consider 3 benchmarks: 3 applications distributed on
computing clusters with CPU or GPU nodes. These applications are clas-
sical intensive computations: (1) a European option pricer corresponding to
embarrassingly parallel computations, (2) a PDE solver corresponding to an
iterative algorithm including a large amount of computations and several com-
munications at each iteration, and (3) a Jacobi relaxation corresponding to
an iterative algorithm with a huge number of iterations and a small amount
of computations and communications at each iteration. Each benchmark im-
plementation has been optimized both on CPUs and GPUs (especially the
memory accesses), and has been experimented on a CPU cluster and a GPU
cluster. Execution times and consumed energies have been measured and are
introduced, analyzed and modeled in this section.

1.3.1 Testbed introduction and measurement methodology

Our first testbed is a cluster of 16 nodes. Each node is a PC composed
of an Intel Nehalem CPU with 4 hyperthreaded cores at 2.67GHz, 4GB of
RAM, and a NVIDIA GTX285 GPU with 1GB of memory. This cluster has a
Gigabit Ethernet interconnection network built around a small DELL Power
Object 5324 switch (with 24 ports). The energy consumption of each node is
monitored by a Raritan DPXS20A-16 device, that continuously measures the
electric power dissipation (in Watts) and can monitor up to 20 nodes. This
device hosts a SNMP server that a client can question to get the instantaneous
power consumption of each node.

In order to achieve both computing and energy performance measurements
of our parallel application, we run a shell script that: (1) runs a Perl SNMP
client sending requests to the SNMP server of the Raritan monitor device

6 Optimizing performances in heterogeneous clusters

to sample the electric power consumption, and storing data in a log file, (2)
runs the parallel application on a cluster (executing a mpirun command), (3)
extracts the right data from the log file and computes the energy consump-
tion when the parallel application has finished. The sampling period of the
power dissipation on any node of the cluster is approximately 300ms, and the
consumed energy is computed as a definite integral using the trapezoidal rule.
The measurement resolution of our complete system appears to be close to
6Watts, i.e. approximately 4% of the measured values.

We only consider the energy consumption of the nodes that are actually
used during the computation, as it is easy to remotely switch off unused nodes
of our GPU cluster. However it is not possible to switch off the GPU of one
node when using only its CPU, and we have not yet tried to reduce the
frequency and the energy consumption of the CPU when using mainly the
GPU. We also consider the energy consumption of the cluster interconnection
switch, that appears to be very stable, independently of the communications
achieved across the cluster.

1.3.2 Observation of experimental performances

European option pricer benchmark: Pricing is a very classic and fre-
quently run computation in the financial industry. Many banks aim at speed-
ing up and improving its energy consumption using different parallel architec-
tures, including GPUs. This pricer of European options is based on indepen-
dent Monte Carlo simulations, and from a pure parallel algorithmic point of
view, this is an embarrassingly parallel algorithm: each computing node pro-
cesses some independent Monte Carlo trajectories, and communications are
limited to data distribution at the beginning of the application, and to the
gathering of the results of each computing node at the end. However, we have
been very careful about the parallelization of the random number generator
(RNG), to be able to generate uncorrelated random numbers from thousands
of threads spread on different nodes [1] without decreasing the pricing accu-
racy.

The implementation on multicore CPU clusters has been achieved using
both MPI, to create one process per node and to insure the few inter-nodes
communications, and OpenMP to create several threads per core and take
advantage of each available core. The OpenMP parallelization has been opti-
mized to create the required threads only once (inside a large parallel region),
and to balance the work among these threads. Moreover, inside each thread,
data storage and data accesses are implemented in order to optimize cache
memory usage. The implementation on GPU clusters uses the same MPI based
computation distribution and internodes communication, while CUDA is used
to send data and Monte Carlo trajectory computations on the GPU of each
node. In order to avoid frequent data transfers between CPU and GPU, we
have ported our RNG to the GPU and all node computations are executed
on the GPU. Moreover, we have optimized the GPU memory accesses, mini-

Optimizing performances in heterogeneous clusters 7

1E6

1E5

1E4

1E3

1E2

1E1

1E0
168421

Pr
ic

er
 -

 E
xe

cu
tio

n
tim

e
(s

)

Number of nodes

1 cpu-core/node
n cpu-cores/node

1 gpu/node

1E4

1E3

1E2

1E1

1E0
168421

Pr
ic

er
 -

 E
ne

rg
y

co
ns

um
ed

 (
W

.h
)

Number of nodes

1 cpu-core/node
n cpu-cores/node

1 gpu/node

FIGURE 1.1: First benchmark: European option pricer

1E3

1E2

1E1

1E0
168421

So
lv

er
 -

 E
xe

cu
tio

n
tim

e
(s

)

Number of nodes

1 cpu-core/node
n cpu-cores/node

1 gpu/node

1E2

1E1

1E0
168421

So
lv

er
 -

 E
ne

rg
y

co
ns

um
ed

 (
W

.h
)

Number of nodes

1 cpu-core/node
n cpu-cores/node

1 gpu/node

FIGURE 1.2: Second benchmark: PDE solver

1E4

1E3

1E2

1E1
168421

Ja
co

bi
 -

 E
xe

cu
tio

n
tim

e
(s

)

Number of nodes

1 cpu-core/node
n cpu-cores/node

1 gpu/node

1E3

1E2

1E1

1E0
168421

Ja
co

bi
 -

 E
ne

rg
y

co
ns

um
ed

 (
W

.h
)

Number of nodes

1 cpu-core/node
n cpu-cores/node

1 gpu/node

FIGURE 1.3: Third benchmark: Jacobi relaxation

8 Optimizing performances in heterogeneous clusters

mizing the usage of the (slow) global memory of the GPU, and using mostly
(fast) GPU registers.

Figure 1.1 shows quasi-ideal execution time decreases on CPU and GPU
clusters, while the energy consumptions remains approximately constant. Fi-
nally, the execution on the GPU cluster seems really more efficient than the
execution on the multicore CPU cluster.

PDE solver benchmark: This application performs the resolution of partial
differential equations (PDEs) using the multisplitting-Newton algorithm and
an efficient linear solver using the biconjugate gradient algorithm. The solver
is applied to the resolution of a 3D transport model, which simulates chemical
species in shallow waters. That application is fully detailed in Section 1.7.

Figure 1.2 exhibits very good decreases of the execution times, and using
a GPU cluster seems more interesting than using a CPU cluster. However, the
consumed energy does not remain constant and increases significantly when
using more than 4 GPUs.

Jacobi relaxation benchmark: This application solves the Poisson’s equa-
tion on a 2D grid using a Jacobi algorithm. The values on the border of the
grid are fixed. The goal is to compute the values inside the grid. In these im-
plementations, at each iteration, a new grid is computed such that the value
at each point becomes the mean value of its four neighbors in the previous
grid state. Hence, for each point, only three additions and one division by four
are required, and with a naive implementation, five memory accesses would be
required (four reads and one write). But on modern architectures, memory ac-
cesses are much more expensive than computations [23], and this application
is memory bound. This is the reason why all our optimizations on CPU and
on GPU aim at reducing bandwidth consumption and at using the memory
bus efficiently.

The CPU implementation has been designed to access to contiguous data
elements in order to use the cache memory efficiently. For the considered grid
sizes, several rows fit in the cache memory. Hence data elements will be com-
puted row by row. This way, the number of cache misses is minimized and as
a consequence the number of memory accesses is minimized as well. A blocked
version computing 8 × 8 blocks has been tried but it showed less interesting
performances. The only two effective improvements we have found are loop-
unrolling and padding to grid sizes that are multiple of 16 elements, to avoid
accesses separated by the critical stride as explained in [14]. The GPU imple-
mentation has been designed for GPU without generic cache mechanisms. It
aims at optimizing the usage of the small shared memories available on-chip,
that can be used as a software-managed cache memory. However, the shared
memory is too small to contain several rows of the grid. As a consequence,
data partitioning techniques have been used inside each computing node to
process the Jacobi Grid per blocks. The size of these blocks has been optimized
to get coalesced memory accesses.

Optimizing performances in heterogeneous clusters 9

200

100

10

1
168421

Pr
ic

er
 -

 G
PU

 v
s

C
PU

 c
lu

st
er

Number of nodes

SU
Energetic Gain

200

100

10

1
168421

So
lv

er
 -

 G
PU

 v
s

C
PU

 c
lu

st
er

Number of nodes

SU
Energetic Gain

200

100

10

1
168421

Ja
co

bi
 -

 G
PU

 v
s

C
PU

 c
lu

st
er

Number of nodes

SU
Energetic Gain

FIGURE 1.4: GPU cluster vs CPU cluster relative performances

Moreover, as we use clusters, inter-nodes communications are required at
each iteration. But they exchange data between CPU memories or between
GPU memories (on GPU clusters), that can be long compared to the compu-
tation speed of each node. So we have optimized these communications, im-
plementing overlapped asynchronous communications, and overlapping with
CPU-to-GPU and GPU-to-CPU data transfers when possible.

Figure 1.3 shows better performances when using the GPU cluster instead
of the CPU one, but the speedup is poor and the energy consumption is clearly
increasing with the number of used nodes. Finally, the GPU cluster appears
always more efficient than the CPU cluster. But the computing and energy
performance profiles of these 3 benchmarks are different, and the superiority
of the GPU cluster seems to evolve with the number of used nodes. This issue
is investigated in the next section.

1.3.3 Relative performances of the CPU and GPU clusters

In order to analyze the interest to use a GPU cluster in place of a CPU
cluster, we have computed the relative speedup (SU) and the relative energy

10 Optimizing performances in heterogeneous clusters

gain (EG) of the GPU cluster compared to the CPU one. Figure 1.4 illustrates
these computing and energy relative performances for the 3 benchmarks in-
troduced in the previous section. We can observe that:

• The option pricer with embarrassingly parallel computations achieves a
speedup and an energy gain close to 100 on a GPU cluster compared to a
multicore CPU cluster, while the PDE solver and the Jacobi relaxation,
including computations and communications, reach speedup and energy
gain in the range from 1.6 to 10.

• Speedup and energy gain decrease when the number of used nodes in-
creases. This phenomena is limited with the option pricer, but is stronger
with the PDE solver and very clear with the Jacobi relaxation. On larger
clusters, performances could become higher on multicore CPU clusters.

• Speedup and energy gain curves exhibit very similar profiles. They seem
to have the same behavior.

In fact, when the interconnection network is the same, the communica-
tions are a little bit longer on a GPU cluster. As we need to exchange some
data located in GPU global memories, data have to be transferred from GPU
memories to CPU ones. Then, internodes communications must be performed
(using MPI for example) and, finally, the received data must be transferred
into the global GPU memories. On the opposite, computations are faster on
GPUs. So, the ratio of communication time in the total execution time signif-
icantly increases when using a GPU cluster. That leads to a smaller perfor-
mance increase when using more nodes, and finally the multicore CPU cluster
can become more efficient.

The next section establishes a first performance and energy consumption
model on two different clusters. This model is limited to scalability areas of the
performance curves, and is applied to the cases of a multicore CPU cluster and
a GPU cluster. It aims at predicting the most efficient cluster as a function
of the number of used nodes, and at helping us to always choose the best
solution.

1.3.4 Basic modeling of CPU and GPU cluster performances

Execution time and energy consumption on one cluster: Consider-
ing A: a cluster, N : the number of used nodes, T (A,N): the execution time
of an application, and E(A,N): the consumed energy, in the ideal case we
have: T (A,N) = T (A, 1)/N , and E(A,N) = E(A, 1) is constant. Our first
benchmark (European option pricing achieving embarrassingly parallel com-
putations) exhibits performances close to this ideal case (see Fig. 1.1). But
the other experiments do not exhibit these ideal performances. However, lines
appear approximately straight when using logarithmic scales, meaning the

Optimizing performances in heterogeneous clusters 11

parallelization scales, so we can write:

T (A,N) = T (A, 1)/NσAT , 0 ≤ σAT ≤ 1 (1.1)

E(A,N) = E(A, 1) ·NσAE , 0 ≤ σAE ≤ 1 (1.2)

Where σAT and σAE are the slopes of the straight lines of the execution time
and energy consumption on curves drawn with logarithmic scales. In the ideal
case, these parameters values would be 1, but in practice they are less than 1
(see Fig. 1.2 and Fig. 1.3).

So, when the parallelization scales, the speedup and energy gain of cluster A
compared to a sequential run on one of its nodes (level 1 gains) are:

SU1(A,N) =
T (A, 1)

T (A,N)
= N+σAT (≥ 1) (1.3)

EG1(A,N) =
E(A, 1)

E(A,N)
= N−σ

A
E (≤ 1) (1.4)

In this basic model we make the following assumptions:

1. The electric power dissipated by one node of cluster A dur-
ing a sequential computation remains constant and is equal to
P (A, 1) = E(A, 1)/T (A, 1).

2. The electric power dissipated by any used node of cluster A during a
parallel computation is independent of the number of used nodes, and
is equal to P (A, 1).

3. The electric power dissipated by the network switch of the cluster re-
mains constant and is equal to Pswitch(A).

Hypothesis 3 matches all our observations on different clusters. But we will see
in Section 1.5 that hypotheses 1 and 2 are approximations. However, assuming
these hypotheses, the energy consumed on one node during a sequential run
is:

E(A, 1) = P (A, 1) · T (A, 1) +
Pswitch(A)

Nmax
· T (A, 1) (1.5)

where Nmax is the maximal number of available nodes in the cluster. And the
energy consumed on N nodes during a parallel run is:

E(A,N) = P (A, 1) · T (A,N) ·N +
Pswitch(A) ·N

Nmax
· T (A,N) (1.6)

E(A,N) =
T (A,N)

T (A, 1)
·N ·

(
P (A, 1) · T (A, 1) +

Pswitch(A)

Nmax
· T (A, 1)

)
Using equations 1.1 and 1.5, we get:

E(A,N) = N1−σAT · E(A, 1) (1.7)

12 Optimizing performances in heterogeneous clusters

and using equation 1.2 we can deduce the relation between the execution time
and energy consumption formulas on one cluster, in the scalability area of the
performance curves:

σAE = 1− σAT (1.8)

Relative speedup and energy gain between two clusters: To identify
the most efficient parallelization on two different clusters A and B, we compute
the respective gains on cluster A compared to the gains on cluster B (level 2

gains): SU
A/B
2 (N) and EG

A/B
2 (N). This leads to:

SU
A/B
2 (N) =

T (B,N)

T (A,N)

=
T (B, 1)

T (A, 1)
·NσAT−σ

B
T

= SU
A/B
2 (1) ·NσAT−σ

B
T (1.9)

and to:

EG
A/B
2 (N) =

E(B,N)

E(A,N)

=
E(B, 1)

E(A, 1)
·NσBE−σ

A
E

= EG
A/B
2 (1) ·NσAT−σ

B
T (1.10)

These two relative gains have different initial values (on 1 node) but similar
evolutions (same σAT −σBT exponent in the gain expressions). This is the reason
why the speedup and energy gain curves on Fig. 1.4 are nearly parallel.

As an example, let’s consider that clusterA has faster nodes than clusterB.
Depending on the relative values of σAT and σBT , it is possible that the relative

gain SU
A/B
2 becomes smaller than 1 inside the scalability area (the validity

domain of equation (1.9)) beyond a threshold number of nodes NA/B,T . Then,
cluster B runs faster than cluster A beyond this threshold, and similarly,
cluster B can be less energy-consuming beyond a threshold NA/B,E . Using
equations (1.9) and (1.10) we can determine these two thresholds:

SU
A/B
2 (NA/B,T) = 1 ⇐⇒ NA/B,T =

(
SU

A/B
2 (1)

) −1

σA
T

−σB
T (1.11)

EG
A/B
2 (NA/B,E) = 1 ⇐⇒ NA/B,E =

(
EG

A/B
2 (1)

) −1

σA
T

−σB
T (1.12)

Application of the model to a CPU and a GPU clusters: When using
one GPU, the computation time is smaller than on one CPU (or we do not

use the GPU), and SU
g/c
2 (1) > 1. But communication times are longer on a

Optimizing performances in heterogeneous clusters 13

GPU cluster than on a CPU cluster with the same interconnection network,
because they require the same CPU communications plus some CPU-GPU
data transfers. So, the scalability is weaker on the GPU cluster and the σT
parameter is smaller: 0 ≤ σgpuT ≤ σcpuT ≤ 1. Moreover, although the dissipated
electric power of a single GPU node is larger than the one of a CPU node, the
overall energy consumption of the GPU cluster is usually lower than the CPU

cluster: EG
g/c
2 (1) > 1. These hypotheses are verified on our three benchmarks

(see Fig. 1.1, Fig. 1.2 and Fig. 1.3). When these hypotheses are true, the two
threshold numbers of nodes (equations (1.11) and (1.12)) exist and are greater
than 1. Then we define:

Ng/c,min = min(Ng/c,T , Ng/c,E) (1.13)

Ng/c,max = max(Ng/c,T , Ng/c,E) (1.14)

When N < Ng/c,min the GPU cluster solution is faster and less energy-
consuming, when Ng/c,max < N the multicore GPU cluster is slower and
more energy-consuming, and when the number of nodes is in the range
[Ng/c,min;Ng/c,max] the GPU cluster is either faster or less energy-consuming.

So, assuming our different hypotheses are true (mainly expressed by the
existence of a scalability area), three different execution configurations exist:

• N < Ng/c,min: the GPU cluster is more interesting.

• Ng/c,min ≤ N ≤ Ng/c,max: the GPU cluster is more or less interest-
ing than the CPU cluster, depending on the relative importance of the
computation speed and the energy consumption.

• Ng/c,max < N : the CPU cluster is more interesting.

1.3.5 Need for predicting the best operating mode

Using a GPU cluster to run an embarrassingly parallel program (without
internode communications) and with all computations running on the GPU,
such as our European option pricer, can be very efficient (see Section 1.3.2
and Fig. 1.1). The speedup and energy gain of one GPU node compared to one
multicore CPU node are close to 100 and remain close to 100 when the number
of nodes increases. Such a case corresponds to the first category described
above.

When all computations are not run on the GPU and frequent data transfer
are required between CPU and GPU on each node, and/or frequent internode
communications are required, the speedup and energy gain on one node are
more limited and decrease when the number of nodes increases. Our PDE
solver and Jacobi relaxation benchmarks belong to this second category (see
Section 1.3.2, Fig. 1.2 and Fig. 1.3).

14 Optimizing performances in heterogeneous clusters

Finally, most parallel programs include internode communications and
data transfers between CPUs and GPUs, and do not perform all their com-
putations on the GPUs. So, the three execution configurations introduced at
the end of section Section 1.3.4 exist, and using a GPU cluster with a large
number of nodes may lead to an important gain or to an important waste of
time and energy.

Usually, the end user is not a computer scientist. Although he is capable
of specifying if he wishes to decrease the execution time or the energy con-
sumption, he is not able to choose whether or not to use GPUs, depending on
the number of available and used nodes. A heuristic has to be designed and
implemented in order to achieve an automatic choice of the right computing
kernel to use in execution configurations 1 and 3, and to respect the user
objective in execution configuration 2.

1.3.6 Interests and limits of the basic model, and need for a
new one

The heuristic we introduced in the previous section needs a model to pre-
dict performances and choose a computing kernel. Our previous model, defined
in section 1.3.4, does not make any assumption on the internal architecture
of the clusters A and B. It is based on the observation of a scalability area
and on measurement of computing and energy performances of clusters A and
B when using two different numbers of nodes. This leads to achieve at least
four benchmarks of the target application, and to establish some kind of ex-
perimental reference curves. This approach is acceptable before to enter an
exploitation mode, running many times and frequently the application. Then,
achieving four extra-runs of the application code in order to improve all oth-
ers, seems the right solution. Of course it is not always possible to achieve
some runs on only one node, depending on the problem size, but the model
equations could be adapted to not require experiments on one node.

However, many researchers have to run their parallel application in ex-
perimentation mode: they achieve only few runs (but large runs) before to
upgrade the application. Then, execution of four benchmarks before to opti-
mize the execution of each new version of the application can be prohibitive.
To optimize the execution of a parallel application in experimentation mode
we need a more accurate model of our architecture, requiring only elementary
benchmarks to be calibrated for our machine. Such a model will be designed
in sections 1.5 and 1.6.

Optimizing performances in heterogeneous clusters 15

PDE
solver

Energy device and monitor A Energy device and monitor B

PC - 1 PC - 2PC - 0 PC - N-1

SNMP
clientB

PDE
solver

SNMP
clientA

PDE
solver

PDE
solver

PDE
solver

PDE
solver

/tmp

SNMP server SNMP server

main script
mpirun

FIGURE 1.5: Hardware and software architecture of the test platform.

1.4 Measurement issues and alternative modeling ap-
proach

1.4.1 Measurement methodology

Figure 1.5 illustrates the hardware and software configuration of our
CPU+GPU cluster PC, the energy devices and monitors as well as the bench-
marking mechanism. As already mentioned in Section 1.3.1, each PC is electri-
cally connected to an output port of an energy device (a Raritan DPXS20A-
16), that measures the instantaneous electrical power dissipation of all its
outputs. Those measures are collected via SNMP requests.

In order to measure both computing and energy performances of our ap-
plications our benchmarking methodology is the following:

1. We allocate some nodes on our cluster, through the OAR cluster man-
agement environment, and run a main shell script on the first node we
get (nodes are sorted by alphabetic order).

2. The main shell script starts a SNMP client (Perl script) for each SNMP
server (i.e. for each electric device and monitor to use).

3. Each SNMP client sends requests to a SNMP server to sample the elec-
trical power dissipated by each of its outputs. The sampling interval is
close to 300ms in our experiments, but this can be tuned. Each SNMP
client stores the acquired data in log files on the local disk of the first
PC. Each line of a log file stores the sample number, the sample time
and the electrical power dissipation of each output port of the electrical
device at the sample time.

4. The main shell script waits for the different log files to be created (mean-
ing the energy monitoring mechanism is running). Then, it reads these
files and gets the current sample number from each file. The main shell

16 Optimizing performances in heterogeneous clusters

script runs the parallel application on the allocated nodes, executing a
mpirun command, while the electrical power dissipation sampling con-
tinues.

5. The execution time of the MPI parallel program is measured internally
using gettimeofday.

6. When the mpirun command finishes, the main shell script reads the log
files, and get the new current sample numbers. Then it stops the SNMP
clients and computes the energy consumed by all the PC nodes involved
in the parallel run. It computes a definite integral of the instantaneous
power measures between the sample numbers surrounding the mpirun ex-
ecution, using the trapezoidal rule and considering time measures stored
in each line of the log files.

Finally, each benchmark is repeated 5 times, then the average values of
execution time and energy consumption are computed.

1.4.2 Technical limitations of the measures

A first point that may induce small perturbations in the performance mea-
surements is the concurrent execution of several SNMP clients on the first al-
located node. These processes run concurrently of the parallel application and
might disturb it. Nonetheless, during our benchmarks we did not observe any
significant impact on the execution time measures when running the energy
consumption measurement. But users must be aware that it could happen on
a larger system, using many energy devices and monitors and running many
SNMP clients.

The first real limitation of our benchmarking system is about the uncer-
tainties of the measures. For the whole set of experiments involving several
nodes of the cluster (with or without GPU, in synchronous or asynchronous
mode), the average variations of the execution times are close to 7%, and the
average variations of energy consumptions are around 7.5% and are a bit less
stable. The good point is that those variations seem to be strongly correlated.
Although they may be partially explained by the sensor quality concerning the
energy consumption measures, it remains quite difficult to precisely identify
their exact sources.

We also observed four other sources of measurement uncertainties. But
those ones can be analyzed and taken into account in our model:

1. There are serious variations in the power consumptions of the differ-
ent PCs in a homogeneous cluster. Current PCs with identical external
features have very close computing performances, but their energy con-
sumptions can vary a lot. So, we decided to consider the energy con-
sumption of each node in our model rather than considering a global
average energy consumption of the cluster.

Optimizing performances in heterogeneous clusters 17

2. We observe some steps in electrical power dissipation of each cluster
node. When running computations on the GPU, the dissipated electrical
power increases, stabilizes and then increases again before stabilizing
again. We observe the symmetric phenomena when computations end.
This is mostly due to the GPU fans start/stop cycles. They do not
start and stop exactly when computations begin and end, but a little
bit later when the GPU temperature increases or decreases and crosses
thresholds.

3. We do not observe an instantaneous power dissipation decrease when
stopping computations to enter an inter-node communication sub-step
of the application. First, sensors do not detect an immediate decrease of
power dissipation of the node when intensive computations end. Second,
according to the previous point, the fans continue to run up to one
minute before stopping. As a consequence, entering a communication
sub-step leads to a slow decrease of the energy consumption during this
sub-step. In particular, when the sub-step is short, the energy decrease
is likely to be unnoticeable. However, for sufficiently long sub-steps, the
decrease should reach the idle power level.

4. Performing communications has a negligible impact over the energy con-
sumption. Hence, overlapping computations and communications, like
in our asynchronous algorithms, does not lead to any additional energy
consumption.

Our model has been designed to take into account these general features of
parallel systems, and then to minimize their associated uncertainties.

1.5 Node level model

In this section and the following one, we present a theoretical model linking
together the energy and computing performances of two sets of nodes execut-
ing a same application. That model is decomposed in two nested levels. The
inner one is the node level, described in this section, which consists in a single
machine. The second one is the cluster level, described in Section 1.6.

In the scope of this study, dealing with the comparison between CPU and
GPU clusters, we focus on intensive computing applications in which other
activities (especially disk accesses) are negligible with respect to the com-
putations. Nonetheless, if necessary, such additional activities could be quite
easily added to the model presented throughout the two following sections.
They would be inserted into the model in a similar way as the computing
activities.

18 Optimizing performances in heterogeneous clusters

Concerning the node level, we link the energy and computing performances
of two node configurations. In the following, we do not make any distinc-
tion between the denominations ”the two node configurations” and ”the two
nodes”, but the reader must keep in mind that those two nodes may corre-
spond to the same physical node used in two different configurations (use of
different numbers of CPU cores and/or additional accelerators: SSE, GPU,
FPGA: Field-Programmable Gate Array,...).

1.5.1 Complete model

The hypotheses made over the hardware configuration of a node are very
general as a node contains:

• at least one and possibly several CPU cores

• 0 or more additional accelerator cards (GPU and/or FPGA)

In fact, on one node, the power can be divided into several parts: PI , the
power consumed by the system node in idle state, which is assumed to be
constant during the execution of the application, and a series of U powers
PC(ui, t), 1 ≤ i ≤ U , each one corresponding to the additional power (in
addition to PI) used by computing unit ui at time t if it is active (i.e. making
computations).

If we assume that:

• the powers of the computing units are cumulative when used together

• for every computing unit ui, its additional power Pc(ui, t) is either null
(not active) or maximal (active)

then the total power used at each time t on one node is
∑U
i=1 PC(ui, t) + PI ,

and the total amount of energy consumed during a period T is given by:

E =

∫ T

0

(
U∑
i=1

PC(ui, t) + PI

)
dt = T · PI +

∫ T

0

U∑
i=1

PC(ui, t)dt (1.15)

Then, if we denote by β(ui) (0 ≤ β(ui) ≤ 1) the ratio of the total execution
time of the application during which unit ui is active, and by PC(ui) the
additional power used by unit ui (assumed constant during ui activity), (1.15)
can be reformulated as:

E = T ·
(

U∑
i=1

β(ui)PC(ui) + PI

)
(1.16)

The transition from (1.15) to (1.16) is mathematically valid because the
functions PC(ui) are piecewise continuous over the integration interval (dura-
tion T).

Optimizing performances in heterogeneous clusters 19

Although this formulation is very interesting, it requires a very accurate
knowledge on the behavior of the studied application, which is not always
available in practice. Indeed, it is necessary to know the respective periods
of use of every computing unit during the execution of the application. In
some simple cases, where just a few different types of units are used, it may
be possible to get reasonable estimations of those information. However, in
most cases, some benchmarks of the application itself are mandatory to get
accurate evaluations in its context of use.

1.5.2 Discussion on the importance to avoid benchmarking
the target application

An important aspect that has to be taken into account is the way to
deduce the different computation ratios. Those ratios can be deduced either
by a theoretical analysis or via a series of executions of the target application
on the target cluster.

The first solution is not possible when the algorithm and source code of the
considered application are not available. Even in the opposite case, it may be
a hard task to theoretically deduce the ratios, especially in algorithms where
the execution path is irregular. And finally, the time to lead such a detailed
study is not always available.

The second solution only depends on the availability of the target cluster,
but most of the times this is not an obstacle. Nevertheless, executing the
target application several times to deduce its behavior is kind of a nonsense in
many situations, especially if we want to minimize the overall energy expenses
(which include the benchmarks required for the application setting).

This is why we are concerned with minimizing application-dependent
benchmarks by using as much as possible small generic benchmarks. And
when benchmarks of the application are mandatory, we suggest to use re-
duced configurations (problem size,...) to get minimal execution times and
energy expenses. The information retrieved from such executions may not be
completely representative of the exploitation case, but they should be suffi-
ciently accurate in most cases to allow the model to produce estimations of
acceptable quality. Moreover, the experience of the user may help to deduce
more accurate parameters from the measured ones.

1.5.3 Simplified model

As we focus on the practical usability of the energy model, we propose to
make some approximations over the additional power used during the com-
putations (as opposed to idle times). Thus, we consider only one PC(u, t),
which corresponds to the maximal additional power used by the entire set of
computing units u (typically CPU core(s) and/or GPU(s)) used to perform
the computations. However, as one may be confronted to the comparison of
nodes with different hardware configurations (different numbers of CPU cores,

20 Optimizing performances in heterogeneous clusters

presence or absence of a GPU, model of the GPU if present,...) it is useful
to make the distinction between hardware configurations in the model. So,
we respectively denote by PI(X) the idle power of a node with configuration
X (for example, all the nodes of type X in a cluster), and PC(X,u, t) the
additional power consumed during the computations performed on a node of
type X, with units u at time t.

So, at each time t, the total power used on one node of type A is
PC(A, u, t) + PI(A) and the total amount of energy consumed during a period
T is: ∫ T

0

(PC(A, u, t) + PI(A))dt = T · PI(A) +

∫ T

0

PC(A, u, t)dt (1.17)

Now, let’s consider two distinct executions of a same application on two
nodes A and B. The computing units used on node A for the execution are
uA (CPU core(s) and/or GPU(s)) and the ones used on node B are uB (CPU
core(s) and/or GPU(s)). Also, we denote by TA(uA) the total execution time
on node A using computing units uA, and TB(uB) the total execution time
on node B using units uB . Then, we will have a lower energy consumption on
node A when:

TA(uA)·PI(A)+

∫ TA(uA)

0

PC(A, uA, t)dt ≤ TB(uB)·PI(B)+

∫ TB(uB)

0

PC(B, uB , t)dt

(1.18)
which is equivalent to∫ TA(uA)

0

PC(A, uA, t)dt ≤ TB(uB)·PI(B)−TA(uA)·PI(A)+

∫ TB(uB)

0

PC(B, uB , t)dt

(1.19)

Under the same assumptions as in Section 1.5.1, powers at full load
(i.e. during intensive computations) are considered constant and we have
PC(A, uA, t) = PC(A, uA) and PC(B, uB , t) = PC(B, uB). Moreover, in the
context of a scientific application running on a single node, we consider that
idle times are negligible, and then β(uA) and β(uB) are both equal to 1. Then,
the constraint becomes:

TA(uA) ·PC(A, uA) ≤ TB(uB) ·PI(B)− TA(uA) ·PI(A) + TB(uB) ·PC(B, uB)
(1.20)

which leads to

PC(A, uA) ≤ TB(uB)

TA(uA)
· PI(B)− PI(A) +

TB(uB)

TA(uA)
· PC(B, uB)

≤ TB(uB)

TA(uA)
· (PI(B) + PC(B, uB))− PI(A)

(1.21)

inducing a constraint linking together PC(A, uA), PI(A), PC(B, uB) and
PI(B).

Optimizing performances in heterogeneous clusters 21

Let’s denote α = TB(uB)
TA(uA) the speedup of the execution time on node A

using computing units uA with respect to the one on node B using units uB ,
then we can rewrite (1.21) as:

PC(A, uA) ≤ α · (PI(B) + PC(B, uB))− PI(A) (1.22)

Finally, if we denote the respective powers at full load by

PF (A, uA) = PC(A, uA) + PI(A)

and
PF (B, uB) = PC(B, uB) + PI(B),

we obtain:
PF (A, uA) ≤ α · PF (B, uB) (1.23)

which finally gives:

α ≥ PF (A, uA)

PF (B, uB)
(1.24)

which expresses a simple constraint over α, only in terms of the powers at
full load for the executions on node A and B with respective units uA and
uB . It can be noticed that the speedup α can be estimated by experimental
measures either with small generic benchmarks and the use of a performance
model taking the used computing units into account, or by actual executions
of the considered application with small instances of the problem.

For example, a good approximation of a performance model for multi-core
nodes is to measure the speedup α1 which is the ratio of the execution time
with 1 core of node A over the one with one core of node B. Then, we deduce
α with nA and nB cores respectively by α = α1

nB
nA

.
The interest of that general formulation is that it can be used to compare

executions on any couple of nodes. For example, it can be used to compare
two nodes with different CPUs, or different GPUs, as well as the same node
with and without using a GPU.

In that last case, we have A = B, uA = GPU (precisely 1 CPU core and
1 GPU) and uB = CPU (1 CPU core), and we can rewrite (1.24) as the
simplified formulation:

α ≥ PF (GPU)

PF (CPU)
(1.25)

1.6 Cluster level model

In this section, we present the cluster level of the simplified model intro-
duced in the previous section.

22 Optimizing performances in heterogeneous clusters

Let’s consider that we want to choose between two configurations of clus-
ters (A and B), respectively having NA and NB nodes, to run a given appli-
cation while minimizing the energy consumption. As in the node level section,
we specify the computing units respectively used on each node of the two clus-
ters. For the sake of simplicity, and because it is commonly done in practice,
we suppose that all the nodes of a given cluster are used in the same way.
This means that the same kind of computing units are used. So, in cluster A,
units uA are used (either CPU core(s) or GPU(s)), and in cluster B, units uB
are used. It must be noticed that the two clusters A and B may be the same
physical system.

Also, as it has been observed in practice that there is no significant energy
overhead in network switches whether there is some traffic or not, we consider
in our model that their energy consumption Psw is constant.

Finally, as we perform a comparison between two clusters for a same ap-
plication, the parameters of that application (size, initial values,...) are the
same on the two clusters. As a first order approximation in our modeling,
we consider that the application has the same behavior on all the nodes of
the used cluster (sequences of idle/communication and full load periods are
identical).

However, we have to make a distinction between a synchronous and an
asynchronous application as their computational sequences are quite different,
and so are their energy signatures. For clarity sake, the asynchronous version
is presented first as it is simpler.

1.6.1 Asynchronous application

In the case of an asynchronous application, the computations are per-
formed uninterruptedly during the execution of the application, in parallel of
the communications. This is a rather simple case of parallel execution as it is
very similar to the single node model.

In fact, the energy models on clusters A and B take the following forms:

EA(uA) = TA(uA) · (∑NA
i=1 P

i
F (A, uA) + Psw)

EB(uB) = TB(uB) · (∑NB
i=1 P

i
F (B, uB) + Psw)

(1.26)

And the execution on cluster A is more energy interesting than the one on
cluster B as soon as EA(uA) < EB(uB), leading to:

TA(uA) ·
(
NA∑
i=1

P iF (A, uA) + Psw

)
< TB(uB) ·

(
NB∑
i=1

P iF (B, uB) + Psw

)
(1.27)

and if we denote, similarly to the node level part, the relative speedup of the

execution on cluster A according to the one on cluster B by α = TB(uB)
TA(uA) , then

we obtain:

α >

∑NA
i=1 P

i
F (A, uA) + Psw∑NB

i=1 P
i
F (B, uB) + Psw

(1.28)

Optimizing performances in heterogeneous clusters 23

So, by only knowing the number of used nodes, the powers at full load when us-
ing either computing units uA or uB , and the power of the network switch(es),
we can decide which cluster is the most interesting to use. An advantage of
that formulation is that the information required to take that decision can
be retrieved by small generic benchmarks. The knowledge of the powers of
every node in the considered clusters is actually useful even for homogeneous
clusters. Indeed, we have observed in practice that there may be significant
differences between the powers of similar nodes (see Table 1.1 in Section 1.8).

In a symmetrical way, (1.28) also specifies a constraint over the minimal
relative speedup of cluster A relatively to cluster B in order to get an energy
gain. As in the node level context, the speedup α can be estimated without
requiring executions of the considered application with full size instances of
problem.

Now, in the specific case of deciding whether or not to use the GPUs in a
single cluster (implying A = B, NA = NB = N , P iF (A, uA) = P iF (GPU) and
P iF (B, uB) = P iF (CPU)), we obtain the following version:

α >

∑N
i=1 P

i
F (GPU) + Psw∑N

i=1 P
i
F (CPU) + Psw

(1.29)

which can be even more simplified when the power dissipation between the
identical nodes is negligible (P iF (X) = P jF (X) = PF (X),∀i, j ∈ {1..N}):

α >
PF (GPU) + Psw

N

PF (CPU) + Psw
N

(1.30)

1.6.2 Synchronous application

In the synchronous case, it is commonly assumed that there are, at least
partially, some distinct parts of computation and communication phases. From
the energy point of view, the main difference between those two parts comes
from the fact that during computations the full power of the node is used
(PF), whereas during synchronous blocking communications, the nodes can
be considered in idle state (PI). Also, during the potential sequences where
communications are overlapped with computations, we consider the energy
consumption of the nodes at full load (PF).

The difficult part with synchronous algorithms lies in the necessity to
know, at least approximately, the percentage of non-overlapped communica-
tions performed during the execution of the algorithm according to the overall
execution time. By symmetry, this is equivalent to knowing the percentage of
computations (β(u) in the complete model in Section 1.5.1). This comes from
the distinction in (1.17) of the two different possible phases (computations
or communications) during the execution of the application. And, since the
application is assumed to have the same behavior on every node of the cluster,

24 Optimizing performances in heterogeneous clusters

as discussed at the beginning of this section, we can rewrite (1.17) for every
used node of the cluster, as follows:

EA(uA) =

∫ T

0

PC(A, uA, t)dt+

∫ T

0

PI(A)dt (1.31)

And since by definition PC() is constant (non null) during computations and
null otherwise, the previous equation can be reformulated as:

EA(uA) = T · βA(uA) · PC(A, uA) + T · PI(A) (1.32)

where βA(uA) is similar to the β(ui) in Section 1.5.1, with the additional pre-
cision of the cluster context (configuration A). In practice, a more convenient
expression of (1.32) is obtained by replacing PC() by PF (), the total power at
full load:

EA(uA) = T · (βA(uA) · PF (A, uA) + (1− βA(uA)) · PI(A)) (1.33)

Unfortunately, as mentioned at the end of Section 1.5.1, the acquisition of
the percentage βA(uA) requires at least one benchmark of the target applica-
tion. Moreover, it generally varies in function of the problem size and of the
number of nodes in addition to the computing units used.

As a first approximation we consider that for a fixed number of nodes, the
computation ratio in synchronous applications slightly changes but does not
follow too large variations according to the problem size. In fact, this is rather
closely confirmed experimentally, as depicted in Fig. 1.6 for one of the most
difficult cases of application which is an iterative PDE solver (see Section 1.7
for further details). It can be seen that for the CPU version, there are signif-
icant variations for the very small problem sizes, then the behavior becomes
stable. And for the GPU version, the variations are even more limited. Thus,
the assumption of a constant computation ratio is reasonably acceptable for
most of the applications. So, we propose to approximate that ratio from a
single execution of the considered application. The principle is to choose a
problem size as small as possible although not too small to avoid non repre-
sentative ratios. In particular cases where larger variability may be expected,
a few executions with slightly different problem sizes could be considered to
obtain a representative average ratio.

Then, we obtain the following total energy consumption when running the
considered application on cluster A with computing units uA:

EA(uA) = TA(uA) ·

(
βA(uA) ·

NA∑
i=1

P i
F (A, uA) + (1 − βA(uA)) ·

NA∑
i=1

P i
I (A) + Psw

)
(1.34)

So, when comparing two clusters A and B, cluster A becomes more interesting
than cluster B according to the energy aspect as soon as EA(uA) < EB(uB),
leading to:

TA(uA)·(βA(uA) ·
∑NA

i=1 P
i
F (A, uA) + (1 − βA(uA)) ·

∑NA
i=1 P

i
I (A) + Psw)

< TB(uB) · (βB(uB) ·
∑NB

i=1 P
i
F (B, uB) + (1 − βB(uB)) ·

∑NB
i=1 P

i
I (B) + Psw)

(1.35)

Optimizing performances in heterogeneous clusters 25

 0

 0.2

 0.4

 0.6

 0.8

 1

 10 20 30 40 50 60 70 80 90 100

C
o

m
p

u
ta

ti
o

n
 r

a
ti
o

Problem size

CPU version
GPU version

FIGURE 1.6: Computation percentage of the total execution time in func-
tion of the problem size for a 17 nodes cluster. Results are statistics from 5
executions.

which finally gives

α >
βA(uA) ·∑NA

i=1 P
i
F (A, uA) + (1− βA(uA)) ·∑NA

i=1 P
i
I (A) + Psw

βB(uB) ·∑NB
i=1 P

i
F (B, uB) + (1− βB(uB)) ·∑NB

i=1 P
i
I (B) + Psw

(1.36)

And we can express the constraint of the energy frontier between clusters
A and B only in terms of: (1) the number of used nodes, (2) the powers of
the nodes (with respective computing units uA and uB) at full load and in
idle/communication state, and (3) the power of the network switch(es). Most
of those information can be retrieved by small generic benchmarks, except
for the β() values which require at least one execution of the application, as
discussed above.

Now, if we consider a single cluster and we just want to establish
whether it is interesting to use its embedded GPUs or not, we can sim-
plify the general notations with NA = NB = N , P iF (A, uA) = P iF (GPU),
P iF (B, uB) = P iF (CPU), PI(A) = PI(B) = PI , βA(uA) = β(GPU) and
βB(uB) = β(CPU). According to (1.36), we obtain:

α >
β(GPU) ·∑N

i=1 P
i
F (GPU) + (1− β(GPU)) ·∑N

i=1 P
i
I + Psw

β(CPU) ·∑N
i=1 P

i
F (CPU) + (1− β(CPU)) ·∑N

i=1 P
i
I + Psw

(1.37)

Here again, if the power dissipation between the similar nodes in a same
cluster is negligible, we have P iF (X) = P jF (X) = PF (X), P iI = P jI = PI ,

26 Optimizing performances in heterogeneous clusters

∀i, j ∈ {1, ..., N}, and we obtain the simplified version:

α >
β(GPU) · PF (GPU) + (1− β(GPU)) · PI + Psw

N

β(CPU) · PF (CPU) + (1− β(CPU)) · PI + Psw
N

(1.38)

1.7 Synchronous and asynchronous distributed PDE
solver

Our test application is an iterative PDE solver using the multisplitting-
Newton algorithm together with an inner linear solver. We recall that iterative
methods perform successive approximations toward the solution of a problem
(notion of convergence) whereas direct methods give the exact solution within
a fixed number of operations. Although iterative methods are generally slower
than direct ones, they generally present the advantage of being less mem-
ory consuming. Moreover, they are often the only known way to solve some
problems and they are also the only way to express asynchronous algorithms.

Our PDE solver is designed to solve a 3D transport model, which simulates
the evolution of the concentrations of chemical species in shallow waters. A
system of advection-diffusion-reaction (ADR) has the following form:

∂c

∂t
+A(c, a) = D(c, d) +R(c, t) (1.39)

where c is the unknown vector of the species concentrations, A(c, a) is the
vector related to the advection, and D(c, d) is the vector of the diffusion. a is
the field of local velocities in the liquid, and d is the matrix of the diffusion
coefficients; those last two data are assumed to be known in advance (a may be
for example computed by a hydrodynamic model). Finally, R(c, t) represents
the chemical reactions between the species.

In the following, we consider the problem in three spatial dimensions and
with two chemical species. In that case, (1.39) can be written as a system of
two PDEs:(

∂c1
∂t
∂c2
∂t

)
+

(
∇c1 × a
∇c2 × a

)
=

(
∇ · ((∇c1)× d)
∇ · ((∇c2)× d)

)
+

(
R1(c, t)
R2(c, t)

)
(1.40)

The coupling between the two equations comes from the reaction term R.

1.7.1 Computational model

First of all, (1.40) is transformed into a discrete time (Euler method) and
discrete space (second order finite differences) ODE system of the form:

dx(t)

dt
= f (x(t), t) (1.41)

Optimizing performances in heterogeneous clusters 27

where x is the mesh of points where the concentrations are computed and f
is the non-linear function modeling the ADR.

By the use of an implicit temporal integration, this ODE system becomes:

x(t)− x(t− h)

h
= f (x(t), t) (1.42)

where h is a fixed time step. This equation can then be rewritten as:

F (x(t), x(t− h), t) = x(t− h)− x(t) + hf (x(t), t) (1.43)

and the final problem is to solve F (x(t), x(t− h), t) = 0, which can be refor-
mulated in a simpler way by F (x(t), C(t− h)) = 0, where C(t−h) represents
the constant terms of F at time t.

Using the Newton method, we obtain an iterative scheme to compute x(t):

xk+1(t) = xk(t)− F ′−1
(
xk(t)

)
F
(
xk(t), C(t− h)

)
(1.44)

where xi(t) is the ith iterate of x(t) and F ′
(
xk(t)

)
is the Jacobian matrix of

F
(
xk(t), C(t− h)

)
. The equation can be reformulated as:

F ′
(
xk(t)

) (
xk+1(t)− xk(t)

)
= −F

(
xk(t), C(t− h)

)
(1.45)

Solving that equation requires to solve a linear system at each iteration.
However, it can be noticed that in the ADR problem, the Jacobian matrix
is sparse and its non-zero terms are scattered just on a few diagonals. The
method used to get a parallel version of that algorithm is the multisplitting-
Newton scheme.

1.7.2 Multisplitting-Newton algorithm

There are several methods to solve PDE problems, each of them including
different degrees of synchronism/asynchronism. The method used in this test
application is the multisplitting-Newton [7] which allows for a rather impor-
tant level of asynchronism. Indeed, it is important to validate our model to get
an application which can work either in synchronous or asynchronous mode.

In the computational model described above, the size of the simulation
domain can be huge and the domain is then distributed among several nodes of
a cluster. Each node solves a part of the resulting linear system and sends the
relevant updated data to the nodes that need them. The parallel algorithmic
scheme of the method is as follows:

• Initialization:

– Formulation of the problem under the form of a fixed point problem:
x = T (x), x ∈ Rn where T (x) = x − F ′(x)−1F (x) and F ′ is the
Jacobian

28 Optimizing performances in heterogeneous clusters

– We get F ′ ×∆x = −F with F ′ a sparse matrix

– F ′ and F are distributed over the computing units

• Iterative process:

– Each unit computes a different part of ∆x using the Newton algo-
rithm over its sub-domain as can be seen in Fig. 1.7

– The local elements of x are directly updated with the local part of
∆x

– The non-local elements of x come from the other units by messages
exchanges

– F is updated using the entire vector x

× =0 0

0
0

−
F
L
o
c

F
′
Loc

∆
x
L
o
c

FIGURE 1.7: Local computations associated to the sub-domain of one unit

1.7.3 Inner linear solver

The method described above is a two-stage algorithm in which a linear
solver is needed in the inner stage. In fact, most of the time of the algorithm
is spent in that linear solver. This is why, in the context of our comparison be-
tween CPU and GPU nodes, it is that part of the computations that has been
deported on the GPUs. Due to their regularity, those treatments are very well
suited to the SIMD architecture of the GPU. Hence, on each computing unit,
the linear computations required to solve the partial system are performed on
the local GPU while all the algorithmic control, non-linear computations and
data exchanges between the units are done on the CPU.

The linear solver has been implemented both on CPU and GPU, using the
biconjugate gradient algorithm (see [19] for further details). This linear solver
was chosen because it performs well on non-symmetric matrices (on both con-
vergence time and numerical accuracy), it has a low memory footprint, and it
is relatively easy to implement on a GPU.

Optimizing performances in heterogeneous clusters 29

GPU implementation

Several aspects are critical in a GPU: the regularity of the computations
and the memory which is of limited amount and the way the data are accessed.
In order to reduce the memory consumption of our sparse matrix, we have used
a compact representation, depicted in Fig. 1.8, similar to the DIA (diagonal)
format [18] in BLAS [13], but with several additional advantages. The first
one is the regularity of the structure which allows us to do coalescent memory
accesses most of the time. The second one is that it provides an efficient
access to the matrix itself as well as to its transpose (using simple array index
computations), which is a great advantage as the transpose is required in the
biconjugate gradient method.

AD

0 1 3 6 8LA

0 1 3 6 8

FIGURE 1.8: Compact and regular sparse matrix representation

In order to be as efficient as possible, the shared memory has been used as
a cache memory whenever it was possible in order to avoid the slower accesses
to the global memory of the GPU. The different kernels used in the solver are
divided to make as much as possible data reuse at each call, minimizing by
this way the transfers between the global memory and the registers. To get
full details on those kernels, the reader should refer to [19].

1.7.4 Asynchronous aspects

It is quite obvious that over the last few years, the classical algorithmic
schemes used to exploit parallel systems have shown their limit. As the most
recent systems are more and more complex and often include multiple levels of
parallelism with very heterogeneous communication links between those levels,
the synchronous nature of the schemes presented previously has become a ma-
jor drawback. Indeed, synchronizations may noticeably degrade performances
in large or hierarchical systems, even for local systems.

For a few years now, asynchronous algorithmic schemes have emerged [10,
2, 9, 3, 15, 6], and although they cannot be used for all problems, they are
efficiently usable for a large part of them. In scientific computing, asynchro-
nism can only be expressed in iterative algorithms, as already mentioned. This
condition has strongly motivated the nature of our PDE solver.

The asynchronous feature consists in suppressing any idle time induced

30 Optimizing performances in heterogeneous clusters

by the waiting for the dependency data to be exchanged between the com-
puting units of the parallel system. Hence, each unit performs the successive
iterations on its local data with the dependency data versions it owns at the
current time. The main advantage of this scheme is to allow for an efficient
and implicit overlapping of communications by computations. On the other
hand, the major drawbacks of asynchronous iterations are a more complex
behavior, which requires a specific convergence study, and a larger number
of iterations to reach the convergence. However, the convergence conditions
in asynchronous iterations are verified for numerous problems and, in many
computing contexts, the time overhead induced by the additional iterations
is largely compensated by the gain in the communications [4, 8]. In fact, as
soon as the frequency of communications relatively to computations is high
enough and the communication costs are larger than local accesses, an asyn-
chronous version of an application may provide better performances than its
synchronous counterpart.

In the asynchronous version of our PDE solver, the exchanges of parts of
the vector x are performed asynchronously. One synchronous global exchange
is still required between each time step of the simulation, as illustrated in
Fig. 1.9.

Time

Processor 1

Processor 2

Time step Time step

SimulationSimulation

FIGURE 1.9: Asynchronous iterations inside each time step of the compu-
tation

At the practical level, the main differences with the synchronous version
lie in the suppression of some barriers and in the way the communications
between the units are managed. Concerning the first aspect, all the barriers
between the inner iterations inside each time step of the simulation are sup-
pressed. The only remaining synchronization is the one between each time
step as pointed out above.

The communications management is a bit more complex than in the syn-
chronous version as it must enable sending and receiving operations at any
time during the algorithm. Although the use of non-blocking communications
seems appropriate, it is not sufficient, especially concerning receptions. This
is why a multi-threaded programming is required. The principle is to use sep-
arated threads to perform the communications, while the computations are
continuously done in the main thread without any interruption, until conver-
gence detection. In our version, we use non-blocking sends in the main thread

Optimizing performances in heterogeneous clusters 31

and an additional thread to manage the receptions. It must be noted that in
order to be as reactive as possible, some communications related to the control
of the algorithm (the global convergence detection) may be initiated directly
by the receiving thread (for example to send back the local state of the unit)
without requiring any process or response from the main thread. Subsequently
to the multi-threading, mutexes are necessary to avoid concurrent accesses to
data and variables.

Another difficulty brought by the asynchronism comes from the conver-
gence detection. Some specific mechanisms must replace the simple global
reduction of local states of the units to ensure the validity of the detection [5].
The most general scheme may be too expensive in some simple contexts such
as local clusters. So, when some characteristics of the system are guaran-
teed (such as bounded communication delay), it is often more pertinent to
use a simplified mechanism whose efficiency is better and whose validity is
still ensured in that context. Although both general and simplified schemes of
convergence detection have been developed for this study, the performances
presented in the following sections are those of the simplified scheme, which
gave the best results.

1.8 Experimental validation

In this part, a series of experiments is presented which evaluates the per-
tinence and accuracy of our model at both node and cluster levels.

1.8.1 Testbed introduction and measurement methodology

All the experiments presented below have been performed on a homoge-
neous cluster of 16 machines with Intel Nehalem CPUs (4 cores + hyper-
threading) running at 2.67GHz, 6GB RAM and one NVIDIA GeForce GTX
480 card with 768MB RAM. The OS is Linux Fedora with CUDA 3.0.

In the following experiments, the tested application is the three-
dimensional PDE solver described in Section 1.7. Such an application is quite
representative of the scientific applications run on a cluster. The results re-
lated to that application are an average of five consecutive executions. The
small generic benchmarks used to extract the model parameters from the test
platform are very simple floating point computations performed either on a
specified number of CPU cores or on one CPU core and one GPU. For each
benchmark, the conserved power is the maximal one obtained during a period
of 30s. In Table 1.1 are provided the results obtained with those benchmarks
for the test platform.

32 Optimizing performances in heterogeneous clusters

Psw 34.00
node id PF (CPU1) (1 core) PF (CPU2) (2 cores) PF (GPU) PI

1 167 167 228 146
2 159 159 228 128
3 159 167 218 133
4 167 174 228 139
5 167 167 228 139
6 159 167 218 133
7 174 182 238 152
8 167 174 238 146
9 152 167 218 133
10 174 182 228 146
11 152 159 228 133
12 167 174 238 139
13 167 167 218 139
14 159 167 228 139
15 174 182 238 159
16 182 190 249 159

TABLE 1.1: Powers (Watts) of the switch and the 16 nodes of the cluster

1.8.2 Node level

At the node level, we consider the nodes of the cluster separately and we
apply our simplified model to compare the PDE solver executions with or
without the GPU. In that context, the columns of interest in Table 1.1 are
only PF (CPU1) and PF (GPU). Indeed, our test application uses only one
CPU core when run on a single node and either zero or one GPU. In Table 1.2
are presented, for every node of the cluster, the respective estimations of the α
limits deduced from (1.25), the observed ones, and the estimation/observation
ratios.

Node id −→ 1 2 3 4 5 6 7 8
Estimated α 1.365 1.434 1.371 1.365 1.365 1.371 1.368 1.425
Ratio 1.090 1.136 1.109 1.166 1.105 1.108 1.106 1.128
Observed α 1.252 1.262 1.236 1.171 1.235 1.238 1.237 1.264
Node id −→ 9 10 11 12 13 14 15 16
Estimated α 1.434 1.310 1.500 1.425 1.305 1.434 1.368 1.368
Ratio 1.110 1.070 1.194 1.064 1.031 1.148 1.111 1.085
Observed α 1.292 1.225 1.256 1.339 1.266 1.249 1.231 1.261

TABLE 1.2: Model estimates compared to experimental observations for
every node of the cluster.

It can be seen that the estimations are quite close to the observed frontiers.
However, a global trend of overestimation can be observed in the whole set of
estimates (all the ratios are greater than one). Although that global bias is

Optimizing performances in heterogeneous clusters 33

quite reasonable (mean bias around 0.11), the most important ones are quite
significant as they reach a little more than 19% for node 11 (in bold face).
In order to give a better idea of the error made in that extreme case, the
computing and energy ratios are depicted in function of the problem size for
node 11 in Fig. 1.10. Such bias may lead to wrong choices near the frontier.

 0.5

 1

 1.5

 2

 2.5

 3

 5 10 15 20 25 30

R
a

ti
o

Problem size

estimate

observation

Computations
Energy

FIGURE 1.10: Computing and energy ratios of the CPU version over the
GPU one for the ADR problem on node 11, in function of the problem size
(3D cubic domain x× x× x).

Although a part of that bias may be explained by the fair accuracy of the
energy measures, it is not sufficient to explain the whole bias. In fact, the main
cause of error comes from the approximations made in the simplified model.
Typically, in the case of our test application, the GPU is not used to perform
all the computations but only to solve the inner linear systems. Thus, it is only
used during a fraction of the total execution time, and considering PF (GPU)
for the entire execution in (1.25) results in an evident overestimation of the
required power, and thus of α.

So, when it is possible, evaluating at least the main ratios β(ui) for the
target application can substantially enhance the final estimation. As an exam-
ple, in our test application, we evaluate β(GPU) and we obtain the following
equation for the estimation of α:

α ≥ β(GPU)PF (GPU) + (1− β(GPU))PF (CPU1)

PF (CPU1)
(1.46)

To obtain β(GPU), we have measured the percentage of GPU usage in the
entire execution time. Unfortunately, that measure cannot be used directly for
two reasons. The first one is that unlike the full CPU version, the percentage
of GPU usage strongly varies with the problem size. In fact, for small problem

34 Optimizing performances in heterogeneous clusters

sizes (between 53 and 303 here), the GPU is not fully loaded and its usage time
does not evolve as fast as the CPU usage with the problem size. We have then
to consider an average from a few problem sizes. The second reason is that
the energy consumption does not follow discontinuous variations and once a
high power has been reached, the return to the lowest power takes some time,
as shown in Fig. 1.11 with a simple benchmark.

 0

 50

 100

 150

 200

 250

 0 20 40 60 80 100

P
o

w
e

r
(W

a
tt

s
)

Time (seconds)

GPU activity

FIGURE 1.11: Power consumption during and after a GPU usage of 20s on
a single node.

So, to compensate for the slow power decrease after high consumption
periods, the measure has to be weighted according to the mean power level
after the GPU usage. As the power decrease has a typical step at the middle
value between full GPU usage and idle power, a good weighting is the middle
value between the measured GPU usage percentage and the total time (i.e 1),
that is:

β(GPU) =
βmeasured(GPU) + 1

2

Finally, from (1.46) and the deduced β(GPU) for every single node, we
obtain a mean ratio between the predicted α and the observed ones of 0.985
and minimal and maximal values respectively of 0.934 and 1.042. Obviously,
this is much better than our first estimations as the standard deviation of the
ratios is smaller and the ratios are globally centered around one.

In conclusion, the previous experiments performed on single nodes have
shown that the simplified node level model has a slight bias. That bias can
be discarded by performing a deeper study and/or benchmark of the target
application. However, as discussed in Section 1.5.2, these corrections require
application-dependent benchmarks which are not always possible nor desirable
to do. Hence, given its relevance, its rather limited estimation bias and its

Optimizing performances in heterogeneous clusters 35

simple practical process, our simplified model can be used in most cases as a
good indicator for energy comparisons.

1.8.3 Cluster level: asynchronous mode

In the following experiments, we consider the entire cluster of 16 machines.
In the asynchronous case, the columns PF (CPU2) and PF (GPU) in Table 1.1
are used. The 2-cores version corresponds to the number of threads required
in the asynchronous version of the PDE solver.

Here, we had the possibility to get the powers of all the nodes in the cluster.
However, for homogeneous clusters, if the power information is available only
on one node, our model can be adapted by considering that all the P iF () are
identical. Nonetheless, the user must be aware that this is an approximation
which may induce an additional bias in the final predictions of the model.

According to (1.29), we can deduce that the use of GPUs on that cluster
will be interesting from the energy point of view as soon as we have:

α >

∑16
i=1 P

i
F (GPU) + Psw∑16

i=1 P
i
F (CPU2) + Psw

>
3669 + 34

2745 + 34
> 1.332

(1.47)

So, the GPU version must be at least around 33.2% faster than the CPU one
to provide an energy gain on this cluster.

This estimation is confirmed by the experiments. Indeed, it can be seen
on Fig. 1.12, depicting the computing and energy ratios of the CPU version
over the GPU one in function of the problem size for the entire cluster (16
nodes), that the estimated speedup α closely matches the frontier at which
the GPU version becomes more interesting than the CPU from the energy
point of view.

1.8.4 Cluster level: synchronous mode

In that last context, the columns PF (CPU1), PF (GPU) and PI of Ta-
ble 1.1 are relevant. The 1-core version corresponds to the synchronous version
of the PDE solver, in which there is only one main thread.

As discussed before, in the synchronous case, generic benchmarks alone
are not sufficient to be able to deduce the constraint over α. An evaluation
of the percentage of time performed at full load during the execution (that is
during computations) is required. The following measures of the β() have been
performed on the target cluster with the target application with a problem
size of 30× 30× 30.

36 Optimizing performances in heterogeneous clusters

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 10 20 30 40 50 60 70 80 90 100

R
a

ti
o

Problem size

estimate

Computations
Energy

FIGURE 1.12: Computing and energy ratios of the CPU version over the
GPU one for the ADR problem on the 16 nodes, in function of the problem
size (3D cubic domain x× x× x).

β(CPU) β(GPU)
0.749 0.602

TABLE 1.3: Computation ratios of the total execution time for the CPU
and GPU versions of the ADR problem with a problem size of 30× 30× 30.

In fact, complementary measures have shown that the values of β(CPU)
and β(GPU) within a range of problem sizes from 103 to 1003 do not vary
very much, and their respective averages are quite close to the ones given in
Table 1.3.

According to (1.37), we deduce that it is worth using the GPUs of the
cluster as soon as we have:

α >
β(GPU)

∑16
i=1 P

i
F (GPU) + (1− β(GPU))

∑16
i=1 P

i
I + Psw

β(CPU)
∑16
i=1 P

i
F (CPU) + (1− β(CPU))

∑16
i=1 P

i
I + Psw

>
0.602 · 3669 + (1− 0.602) · 2263 + 34

0.749 · 2646 + (1− 0.749) · 2263 + 34

> 1.217

That is, the GPU version should be less energy consuming as soon it is around
21.7% faster than the CPU one.

Similarly to the node level context, there is a slight bias in that estimation
with respect to the experimental observation, as can be seen in Fig. 1.13.
That bias is around 5.9% under the actual observed value of α (1.293) and

Optimizing performances in heterogeneous clusters 37

may therefore lead to wrong choices of hardware near the energy efficiency
frontier between CPU and GPU versions.

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 1.6

 1.8

 2

 2.2

 10 20 30 40 50 60 70 80 90 100

R
a

ti
o

Problem size

observation

estimate

Computations
Energy

FIGURE 1.13: Computing and energy ratios of a synchronous CPU version
over its GPU counterpart for the ADR problem in function of the problem
size (3D cubic domain x× x× x).

Here also, that bias can be explained by the slow power decrease after
high consumptions, which are not taken into account in that simplified ver-
sion. This results in significant underestimations of β(GPU) and β(CPU),
leading to a global underestimation of α. There are two ways for correcting
the estimation, which lead to slightly different results but with almost the
same final accuracy (final bias under 1%). The former is also the simplest one
and the most convenient in practice as it consists in taking into account the
slow power decrease directly at the level of β(GPU) and β(CPU). For the
same reasons as in Section 1.8.2, we consider the following corrections:

β(CPU) = βmeasured(CPU)+1
2 = 0.875

β(GPU) = βmeasured(GPU)+1
2 = 0.801

(1.48)

and we obtain:

α >
0.801 · 3669 + (1− 0.801) · 2263 + 34

0.875 · 2646 + (1− 0.875) · 2263 + 34

> 1.301

which is only 0.6% over the observation.
The second possible correction is a bit more complex and require more

information about the application. The idea is to get closer to the complete

38 Optimizing performances in heterogeneous clusters

model described in Section 1.5.1. In fact, in the synchronous version of the
application, we can distinguish three kinds of activities during the execu-
tion: communication (considered similar to idle), CPU-only computations, and
GPU computations. This leads to splitting the initial β(GPU) into β(GPU)
on one side and β(CPUo) (computations only on CPU) on the other side,
leading to the following reformulation of the condition over α:

α >
1

γ

(
β(GPU)

16∑
i=1

P iF (GPU) + β(CPUo)

16∑
i=1

P iF (CPU1)

+(1− β(GPU)− β(CPUo))

16∑
i=1

P iI + Psw

)
where γ is the total energy consumption of the CPU version of the applica-
tion: γ = β(CPU)

∑16
i=1 P

i
F (CPU) + (1− β(CPU))

∑16
i=1 P

i
I +Psw. The final

estimation is obtained after having applied the same slow power decrease cor-
rection as above to the different β(). The result is:

α >
0.565 · 3669 + 0.737 · 2646 + (1− 0.565− 0.737) · 2263 + 34

0.875 · 2646 + (1− 0.875) · 2263 + 34

> 1.281

which is 0.9% under the observation.
Finally, as both corrections seem to give very close lower and upper esti-

mations, it may be interesting to use both of them to get a small fuzzy area
around the real frontier of energy efficiency between CPU and GPU versions.
However, this point has yet to be confirmed with other scientific applications
and should be fully investigated in future works.

1.9 Discussion on a model for hybrid and heterogeneous
clusters

As described in Section 1.5.1 and Section 1.6, the proposed model directly
includes the potential hardware heterogeneity of the used parallel system. We
have seen in Section 1.8 that this model allows us to compare different systems
or configurations of a single system from the energy point of view. However,
the possibility to compare different operating modes of a same application has
not been discussed. In particular, it is relevant to compare the efficiencies of
the synchronous and asynchronous modes when both of them are available for
a given application.

In fact, in previous works [11, 12], we performed a whole set of experiments
with the ADR application on a heterogeneous cluster composed of two homo-
geneous clusters (respectively 14 and 17 machines). In those experiments, we
compared the computing and energy performances of the synchronous and
asynchronous versions of our test application.

Optimizing performances in heterogeneous clusters 39

As can be seen in Fig. 1.14, the frontier between the two versions is not
linear and an accurate model is necessary to be able to determine which op-
erating mode is preferable for a given context of use (number of used nodes
in each cluster).

FIGURE 1.14: Speedup of asynchronous vs synchronous versions of the
ADR application with a heterogeneous GPU cluster

The model proposed in this chapter can be quite easily extended to allow
for the comparison of operating modes. Indeed, from (1.16) in Section 1.5.1,
it can be seen that the energy can always be expressed as a product of the
execution time and the average electrical power consumed by the application
during this time. So, when comparing two contexts of use, whatever those
contexts are, it is always possible to deduce a constraint over α that only
depends on the respective powers corresponding to those contexts. Thus, it is
possible to say that context 2 will be preferable to context 1 as soon as:

α =
T (context 1)

T (context 2)
>

P (context 2)

P (context 1)
(1.49)

And the comparison of operating modes in the same hardware context can be
expressed by:

α =
T (sync)

T (async)
>

P (async)

P (sync)
(1.50)

Hence, with the formulations of the energy consumptions given in Sec-
tions 1.6.1 and 1.6.2, the generic benchmarks on all the nodes of the hetero-
geneous cluster, and a few application benchmarks, it is possible to provide
estimations of α for each heterogeneous configuration. Finally, a compara-
tive map as depicted in Fig. 1.14 could be entirely deduced from only a few
executions of the application.

Current researches are developed on this topic and a complete experimental
study should be proposed in a near future.

40 Optimizing performances in heterogeneous clusters

1.10 Perspectives: towards multi-kernel distributed al-
gorithms and auto-adaptive executions

In this chapter, a complete feedback of our experience in practical and
theoretical works over the energy aspects of parallel computing has been pro-
posed as a starting point. Then, our experimental process has been described
together with the main experimental issues that can be encountered when
measuring energy consumptions. Finally, a complete model linking the com-
puting and energy performances has been presented and experimentally vali-
dated with a representative scientific application. Also, possible extensions to
various contexts have been discussed.

The simplest way to use the model proposed in this chapter is when a user
has to choose between several execution contexts and modes. The user only
has to get the required information by executing a small set of benchmarks
and, according to the results yielded by the model, the user can choose the
most suited environment with respect to his needs.

Nevertheless, in many situations, that choice protocol may not be adapted.
In fact, the user may not be a specialist in computer science and thus not be
able to perform the required benchmarks nor to use the program implementing
the model computations. Moreover, it is also probable that the user would not
want to do such tasks which are outside his/her main domain of work.

So, it is desirable to provide a system that would implement the entire
protocol. However, it is not interesting to insert that choice protocol directly
into the application. First of all, this is not possible when the source code of
the application is not available. Moreover, even in the opposite case, it may
be quite complex and time-consuming to perform such modifications into the
code. And it withdraws the advantage of the application independence of the
protocol.

Thus, the best solution seems to be an additional system controlling the
application execution. The idea is that the user specifies the optimization crite-
ria for the application execution (execution time and/or energy consumption)
on that system. In addition, the execution control system (ECS) needs either a
multi-kernel version of the application or a set of different versions, as well as a
description of all the available nodes in the parallel system. Provided this, the
ECS can automatically run the required generic benchmarks as well as the few
application-dependent benchmarks needed to feed the model. It is then able
to produce the estimations for the set of possible execution configurations and
to choose the optimal one with respect to the user’s specification. Finally, the
adequate version of the application is executed in the corresponding system
and configuration.

The complete design and implementation of the ECS is our priority goal
in our future works in the domain.

Bibliography

[1] L. Abbas-Turki, S. Vialle, B. Lapeyre, and P. Mercier. High dimensional
pricing of exotic european contracts on a GPU cluster, and comparison
to a CPU cluster. In Parallel and Distributed Computing for Finance
(PDCoF09), Roma, Italy, May 29 2009.

[2] D. Amitai, A. Averbuch, M. Israeli, and S. Itzikowitz. Implicit-explicit
parallel asynchronous solver for PDEs. SIAM J. Sci. Comput., 19:1366–
1404, 1998.

[3] J. Bahi. Asynchronous iterative algorithms for nonexpansive linear sys-
tems. Journal of Parallel and Distributed Computing, 60(1):92–112, Jan-
uary 2000.

[4] J. Bahi, S. Contassot-Vivier, and R. Couturier. Evaluation of the asyn-
chronous iterative algorithms in the context of distant heterogeneous clus-
ters. Parallel Computing, 31(5):439–461, 2005.

[5] J. Bahi, S. Contassot-Vivier, and R. Couturier. An efficient and robust
decentralized algorithm for detecting the global convergence in asyn-
chronous iterative algorithms. In 8th International Meeting on High
Performance Computing for Computational Science, VECPAR’08, pages
251–264, Toulouse, June 2008.

[6] J. Bahi, R. Couturier, K. Mazouzi, and M. Salomon. Synchronous and
asynchronous solution of a 3D transport model in a grid computing en-
vironment. Applied Mathematical Modelling, 30(7):616–628, 2006.

[7] J. M. Bahi, S. Contassot-Vivier, and R. Couturier. Parallel Iterative
Algorithms: from sequential to grid computing. Numerical Analysis &
Scientific Computing Series. Chapman & Hall/CRC, 2007.

[8] Jacques M. Bahi, Sylvain Contassot-Vivier, and Raphaël Couturier.
Asynchronism for iterative algorithms in a global computing environ-
ment. In The 16th Annual International Symposium on High Perfor-
mance Computing Systems and Applications (HPCS’2002), pages 90–97,
Moncton, Canada, June 2002.

[9] Z. Bai, V. Migallon, J. Penades, and D.B. Szyld. Block and asynchronous
two-stage methods for midly nonlinear systems. Numer. Math., 82:1–21,
1999.

41

42 Optimizing performances in heterogeneous clusters

[10] D.P. Bertsekas and J.N. Tsitsiklis. Parallel and Distributed Computation.
Prentice Hall, Englewood Cliffs, New Jersey, 1999.

[11] S. Contassot-Vivier, T. Jost, and S. Vialle. Impact of asynchronism on
GPU accelerated parallel iterative computations. In PARA 2010 confer-
ence: State of the Art in Scientific and Parallel Computing, Reykjav́ık,
Iceland, June 2010.

[12] S. Contassot-Vivier, S. Vialle, and T. Jost. Optimizing computing and
energy performances on GPU clusters: experimentation on a PDE solver.
In Jean-Marc Pierson and Helmut Hlavacs, editors, COST Action IC0804
on Large Scale Distributed Systems,1st Year. IRIT, 2010. ISBN: 978-2-
917490-10-5.

[13] J. J. Dongarra, J. Du Croz, I. S. Duff, and S. Hammarling. A set of level
3 basic linear algebra subprograms. ACM Trans. Math. Soft., 16:1–17,
1990.

[14] Agner Fog. Optimizing software in C++: An optimization guide for win-
dows, linux and mac platforms. Technical report, Copenhagen University
College of Engineering, sept 2009.

[15] A. Frommer and D. B. Szyld. On asynchronous iterations. J. Comput.
and Appl. Math., 123:201–216, 2000.

[16] R. Gonzalez and M. Horowitz. Energy dissipation in general pupose
microprocessors. IEEE Journal of solid-state circuits, 31(9), September
1996.

[17] N. Govindaraju, S. Larsen, J. gray, and D. Manocha. A memory model for
scientific algorithms on graphics processors. In ACM/IEEE Conference
on Supercomputing (SC’06), Tampa, FL, USA, November 11-17, 2006.

[18] Michael A. Heroux. A proposal for a sparse blas toolkit. SPARKER
working note #2, Cray research, Inc, 1992.

[19] T. Jost, S. Contassot-Vivier, and S. Vialle. An efficient multi-algorithm
sparse linear solver for GPUs. In Parallel Computing : From Multicores
and GPU’s to Petascale, volume 19 of Advances in Parallel Computing,
pages 546–553. IOS Press, 2010.

[20] X. Ma, M. Dong, L. Zhong, and Z. Deng. Statistical power consumption
analysis and modeling for gpu-based computing. In Workshop on Power
Aware Computing and Systems (HotPower’09), Big Sky, MT, USA, Oc-
tober 10, 2009.

[21] M. Roufouei, T. Stathopoulos, S. Ryffel, W. Kaiser, and M. Sarrafzadeh.
Energy-aware high performance computing with graphic processing units.
In Workshop on Power Aware Computing and Systems (HotPower’08),
San Diego, CA, USA, December 7, 2008.

Optimizing performances in heterogeneous clusters 43

[22] H. Takizawa, K. Sato, and H. Kobayashi. SPRAT: Runtime processor
selection for energy-aware computing. In Third International Workshop
on Automatic Performance Tuning (iWAPT’08), in 2008 IEEE Interna-
tional Conference on Cluster Computing (Cluster 2008), Tsukuba, Japan,
October 1st, 2008.

[23] Wm. A. Wulf and Sally A. McKee. Hitting the memory wall: implications
of the obvious. SIGARCH Comput. Archit. News, 23(1):20–24, 1995.

