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7.1 Introduction

This chapter proposes to draw several development methodologies to ob-
tain efficient codes in classical scientific applications. Those methodologies
are based on the feedback from several research works involving GPUs, either
alone in a single machine or in a cluster of machines. Indeed, our past collab-
orations with industries have allowed us to point out that in their economi-
cal context, they can adopt a parallel technology only if its implementation
and maintenance costs are small according to the potential benefits (perfor-
mance, accuracy,...). So, in such contexts, GPU programming is still regarded
with some distance according to its specific field of applicability (SIMD/SIMT
model) and its still higher programming complexity and maintenance. In the
academic domain, things are a bit different but studies for efficiently integrat-
ing GPU computations in multi-core clusters with maximal overlapping of
computations with communications and/or other computations, are still rare.

For these reasons, the major aim of that chapter is to propose as simple
as possible general programming patterns that can be followed or adapted in
practical implementations of parallel scientific applications. Also, we propose
in a third part, a prospect analysis together with a particular programming
tool that is intended to ease multi-core GPU cluster programming.

7.2 General scheme of synchronous code with computa-
tion/communication overlapping in GPU clusters

7.2.1 Synchronous parallel algorithms on GPU clusters

Considered parallel algorithms and implementations

This section focusses on synchronous parallel algorithms implemented with
overlapping computations and communications. Parallel synchronous algo-
rithms are easier to implement, debug and maintain than asynchronous ones,
see Section 7.3. Usually, they follow a BSP-like parallel scheme, alternating
local computation steps and communication steps, see [19]. Their execution
is usually deterministic, excepted for stochastic algorithms that contain ran-
dom number generations. Even in this case, their execution can be controlled
during debug steps, allowing to track and to fix bugs quickly.

However, depending on the properties of the algorithm, it is sometimes
possible to overlap computations and communications. If processes exchange
data that is not needed for the computation that is following immediately, it is
possible to implement such an overlap. We have investigated the efficiency of
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this approach in previous works [14,21], using standard parallel programming
tools to achieve the implementation.

The normalized and well known Message Passing Interface (MPI) includes
some asynchronous point-to-point communication routines, that should allow
to implement some communication/computation overlap. However, current
MPI implementations do not achieve that goal efficiently; effective overlapping
with MPI requires a group of dedicated threads (in our case implemented with
OpenMP) for the basic synchronous communications while another group of
threads executes computations in parallel. Nevertheless, communication and
computation are not completely independent on modern multicore architec-
tures: they use shared hardware components such as the interconnection bus
and the RAM. Therefore that approach only saved up to 20% of the expected
time on such a platform. This picture changes on clusters equipped with GPU.
They effectively allow independence of computations on the GPU and commu-
nication on the mainboard (CPU, interconnection bus, RAM, network card).
We saved up to 100% of the expected time on our GPU cluster, as we will
expose in the next section.

Specific interests in GPU clusters

In a computing node, a GPU is a kind of scientific coprocessor usually
located on an auxiliary board, with its own memory. So, when data have
been transferred from the CPU memory to the GPU memory, then GPU
computations can be achieved on the GPU board, totally in parallel of any
CPU activities (like internode cluster communications). The CPU and the
GPU access their respective memories and do not interfere, so they can achieve
a very good overlap of their activities (better than two CPU cores).

But using a GPU on a computing node requires to transfer data from the
CPU to the GPU memory, and to transfer the computation results back from
the GPU to the CPU. Transfer times are not excessive, but depending on the
application they still can be significant compared to the GPU computation
times. So, sometimes it can be interesting to overlap the internode cluster
communications with both the CPU/GPU data transfers and the GPU com-
putations. We can identify four main parallel programming schemes on a GPU
cluster:

1. parallelizing only ’internode CPU communications’ with ’GPU compu-
tations’, and achieving CPU/GPU data transfers before and after this
parallel step,

2. parallelizing ’internode CPU communications’ with a ’(sequential) se-
quence of CPU/GPU data transfers and GPU computations’,

3. parallelizing ’internode CPU communications’ with a ’streamed se-
quence of CPU/GPU data transfers and GPU computations’,

4. parallelizing ’internode CPU communications’ with ’CPU/GPU data
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FIGURE 7.1: Native overlap of internode CPU communications with GPU
computations.

transfers’ and with ’GPU computations’, interleaving computation-
communication iterations.

7.2.2 Native overlap of CPU communications and GPU com-
putations

Using CUDA, GPU kernel executions are non-blocking, and GPU/CPU
data transfers are blocking or non-blocking operations. All GPU kernel ex-
ecutions and CPU/GPU data transfers are associated to ”streams”, and all
operations on a same stream are serialized. When transferring data from the
CPU to the GPU, then running GPU computations and finally transferring
results from the GPU to the CPU, there is a natural synchronization and
serialization if these operations are achieved on the same stream. GPU devel-
opers can choose to use one (default) or several streams. In this first scheme
of overlapping, we consider parallel codes using only one GPU stream.

”Non-blocking GPU kernel execution” means a CPU routine runs a parallel
execution of a GPU computing kernel, and the CPU routine continues its
execution (on the CPU) while the GPU kernel is running (on the GPU).
Then the CPU routine can initiate some communications with some others
CPU, and so it automatically overlaps the internode CPU communications
with the GPU computations (see Figure 7.1). This overlapping is natural
when programming with CUDA and MPI: it is easy to deploy, but does not
overlap the CPU/GPU data transfers.
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Listing 7.1: Generic scheme implicitly overlapping MPI communications
with CUDA GPU computations

// Input data and result variables and arrays (example with
// f loat datatype , 1D input arrays , and scalar results )
f loat *cpuInputTabAdr , *gpuInputTabAdr ;
f loat *cpuResTabAdr , *gpuResAdr ;

5

// CPU and GPU array al locations
cpuInputTabAdr = malloc ( s izeof ( f loat ) *N) ;
cudaMalloc(&gpuInputTabAdr , s izeof ( f loat ) *N) ;
cpuResTabAdr = malloc ( s izeof ( f loat ) *NbIter ) ;

10 cudaMalloc(&gpuResAdr , s izeof ( f loat ) ) ;

// Definition of the Grid of blocks of GPU threads
dim3 Dg , Db;
Dg . x = . . .

15 . . .

// Indexes of source and destination MPI processes
int dest = . . .
int s r c = . . .

20

// Computation loop (using the GPU)
for ( int i = 0 ; i < NbIter ; i++) {

cudaMemcpy( gpuInputTabAdr , cpuInputTabAdr , // Data transfer :
s izeof ( f loat ) *N, // CPU −−> GPU (sync . op

)
25 cudaMemcpyHostToDevice ) ;

gpuKernel k1<<<Dg,Db>>>() ; // GPU comp. (async . op)
MPI Sendrecv replace ( cpuInputTabAdr , // MPI comms. (sync . op)

N,MPI FLOAT,
dest , 0 , src , 0 , . . . ) ;

30 // IF there i s (now) a result to transfer from the GPU to the CPU:
cudaMemcpy( cpuResTabAdr + i , gpuResAdr , // Data transfer :

s izeof ( f loat ) , // GPU−−> CPU (sync . op
)

cudaMemcpyDeviceToHost ) ;
}

35 . . .

Listing 7.1 introduces the generic code of a MPI+CUDA implementation,
natively and implicitly overlapping MPI communications with CUDA GPU
computations. Some input data and output results arrays and variables are
declared and allocated from line 1 up to 10, and a computation loop is imple-
mented from line 21 up to 34. At each iteration:

� cudaMemcpy on line 23 transfers data from the CPU memory to the
GPU memory. This is a basic and synchronous data transfer.

� gpuKernel k1<<<Dg,Db>>> on line 26 starts GPU computation (run-
ning a GPU kernel on the grid of blocks of threads defined at line 12 to
15). This is a standard GPU kernel run, it is an asynchronous operation.
The CPU can continue to run its code.

� MPI Sendrecv replace on line 27 achieves some blocking internode
communications, overlapping GPU computations started just before.

� If needed, cudaMemcpy on line 31 transfers the iteration result from one
variable in the GPU memory at one array index in the CPU memory
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FIGURE 7.2: Overlap of internode CPU communications with a sequence of
CPU/GPU data transfers and GPU computations.

(in this example the CPU collects all iteration results in an array). This
operation is started after the end of the MPI communication (previous
instruction) and after the end of the GPU kernel execution. CUDA in-
sures an implicit synchronization of all operations involving the same
GPU stream, like the default stream in this example. Result transfer
has to wait the GPU kernel execution is finished. If there is no result
transfer implemented, the next operation on the GPU will wait until the
GPU kernel execution will be ended.

This implementation is the easiest one involving the GPU. It achieves
an implicit overlap of internode communications and GPU computations, no
explicit multithreading is required on the CPU. However, CPU/GPU data
transfers are achieved serially and not overlapped.

7.2.3 Overlapping with sequences of transfers and computa-
tions

Overlapping with a sequential GPU sequence

When CPU/GPU data transfers are not negligible compared to GPU com-
putations, it can be interesting to overlap internode CPU computations with
a GPU sequence including CPU/GPU data transfers and GPU computations
(see Figure 7.2). Algorithmic issues of this approach are basic, but their im-
plementation require explicit CPU multithreading and synchronization, and
CPU data buffer duplication. We need to implement two threads, one start-
ing and achieving MPI communications, and the other running the GPU se-
quence. OpenMP allows an easy and portable implementation of this overlap-
ping strategy. However, it remains more complex to develop and to maintain
than the previous strategy (overlapping only internode CPU communications
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and GPU computations), and should be adopted only when CPU/GPU data
transfer times are not negligible.

Listing 7.2: Generic scheme explicitly overlapping MPI communications
with sequences of CUDA CPU/GPU transfers and CUDA GPU computations

// Input data and result variables and arrays (example with
// f loat datatype , 1D input arrays , and scalar results )
f loat *cpuInputTabAdrCurrent , *cpuInputTabAdrFuture , *gpuInputTabAdr ;
f loat *cpuResTabAdr , *gpuResAdr ;

5

// CPU and GPU array al locations
cpuInputTabAdrCurrent = malloc ( s izeof ( f loat ) *N) ;
cpuInputTabAdrFuture = malloc ( s izeof ( f loat ) *N) ;
cudaMalloc(&gpuInputTabAdr , s izeof ( f loat ) *N) ;

10 cpuResTabAdr = malloc ( s izeof ( f loat ) *NbIter ) ;
cudaMalloc(&gpuResAdr , s izeof ( f loat ) ) ;

// Definition of the Grid of blocks of GPU threads
dim3 Dg , Db;

15 Dg . x = . . .
. . .

// Indexes of source and destination MPI processes
int dest = . . .

20 int s r c = . . .

// Set the number of OpenMP threads ( to create ) to 2
omp set num threads (2 ) ;
// Create threads and start the paral le l OpenMP region

25 #pragma omp p a r a l l e l
{

// Buffer pointers (thread local variables )
f loat * cur rent = cpuInputTabAdrCurrent ;
f loat * f u tu r e = cpuInputTabAdrFuture ;

30 f loat *tmp ;

// Computation loop (using the GPU)
for ( int i = 0 ; i < NbIter ; i++) {

35 // − Thread 0: achieves MPI communications
i f ( omp get thread num () == 0) {

MPI Sendrecv ( current , // MPI comms. (sync . op)
N, MPI FLOAT, dest , 0 ,
future ,

40 N, MPI FLOAT, dest , 0 , . . . ) ;

// − Thread 1: achieves the GPU sequence (GPU computations and
// CPU/GPU data transfers )
} else i f ( omp get thread num () == 1) {

45 cudaMemcpy( gpuInputTabAdr , current , // Data transfer :
s izeof ( f loat ) *N, // CPU −−> GPU (sync . op

)
cudaMemcpyHostToDevice ) ;

gpuKernel k1<<<Dg,Db>>>() ; // GPU comp. (async . op)
// IF there i s (now) a result to transfer from the GPU to the

CPU:
50 cudaMemcpy( cpuResTabAdr + i , gpuResAdr , // Data transfer :

s izeof ( f loat ) , // GPU−−> CPU (sync . op
)

cudaMemcpyDeviceToHost ) ;
}

55 // − Wait for both threads have achieved their iteration tasks
#pragma omp b a r r i e r
// − Each thread permute i t s local buffer pointers
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tmp = current ;
cur rent = fu tu r e ;

60 f u tu r e = tmp ;
} // End of computation loop

} // End of OpenMP paral le l region
. . .

Listing 7.2 introduces the generic code of a MPI+OpenMP+CUDA imple-
mentation, explicitly overlapping MPI communications with GPU sequences.
Lines 25–62 implement the OpenMP parallel region, around the computation
loop (lines 33–61). For performances it is important to create and destroy
threads only one time (not at each iteration): the parallel region has to sur-
round the computation loop. Lines 1–11 consist in declaration and allocation
of input data arrays and result arrays and variables, like in previous algorithm
(Listing 7.1). However, we implement two input data buffers on the CPU (cur-
rent and future version). As we aim to overlap internode MPI communications
and GPU sequence, including CPU to GPU data transfer of current input data
array, we need to store the received new input data array in a separate buffer.
Then, the current input data array will be safely read on the CPU and copied
into the GPU memory.

The thread creations are easily achieved with one OpenMP directive (line
25). Then each thread defines and initializes its local buffer pointers, and
enters its computing loop (lines 27–33). Inside the computing loop, a test on
the thread number allows to run a different code in each thread. Lines 37–
40 implement the MPI synchronous communication run by thread number
0. Lines 45–52 implement the GPU sequence run by thread 1: CPU to GPU
data transfer, GPU computation and GPU to CPU result transfer (if needed).
Details of the three operations of this sequence have not changed compared
to the previous overlapping strategy.

At the end of Listing 7.2, an OpenMP synchronization barrier on line 56
allows to wait OpenMP threads have achieved MPI communications and GPU
sequence, and do not need to access the current input data buffer. Then, each
thread permute its local buffer pointers (lines 58–60), and is ready to enter
the next iteration, processing the new current input array.

Overlapping with a streamed GPU sequence

Depending on the algorithm implemented, it is sometimes possible to split
the GPU computation into several parts processing distinct data. Then, we
can speedup the GPU sequence using several CUDA streams. The goal is to
overlap CPU/GPU data transfers with GPU computations inside the GPU
sequence. Compared to the previous overlapping strategy, we have to split the
initial data transfer in a set of n asynchronous and smaller data transfers, and
to split the initial GPU kernel call in a set of n calls to the same GPU kernel.
Usually, these smaller calls are deployed with less GPU threads (i.e. associated
to a smaller grid of blocks of threads). Then, the first GPU computations can
start as soon as the first data transfer has been achieved, and next transfers
can be done in parallel of next GPU computations (see Figure 7.3).
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FIGURE 7.3: Overlap of internode CPU communications with a streamed
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NVIDIA advises to start all asynchronous CUDA data transfers, and
then to call all CUDA kernel executions, using up to 16 streams [17]. Then,
CUDA driver and runtime optimize the global execution of these operations.
So, we cumulate two overlapping mechanisms. The former is controlled by
CPU multithreading, and overlap MPI communications and the streamed
GPU sequence. The latter is controlled by CUDA programming, and overlap
CPU/GPU data transfers and GPU computations. Again, OpenMP allows to
easily implement the CPU multithreading, and to wait for the end of both
CPU threads before to execute the next instructions of the code.

Listing 7.3: Generic scheme explicitly overlapping MPI communications
with streamed sequences of CUDA CPU/GPU transfers and CUDA GPU com-
putations

// Input data and result variables and arrays (example with
// f loat datatype , 1D input arrays , and scalar results )
f loat *cpuInputTabAdrCurrent , *cpuInputTabAdrFuture , *gpuInputTabAdr ;
f loat *cpuResTabAdr , *gpuResAdr ;

5 // CPU and GPU array al locations ( al locates page−locked CPU memory)
cudaHostAlloc(&cpuInputTabAdrCurrent , s izeof ( f loat ) *N,

cudaHostAl locDefault ) ;
cudaHostAlloc(&cpuInputTabAdrFuture , s izeof ( f loat ) *N,

cudaHostAl locDefault ) ;
cudaMalloc(&gpuInputTabAdr , s izeof ( f loat ) *N) ;
cpuResTabAdr = malloc ( s izeof ( f loat ) *NbIter ) ;

10 cudaMalloc(&gpuResAdr , s izeof ( f loat ) ) ;
// Stream declaration and creation
cudaStream t TabS [ NbS ] ;
for ( int s = 0 ; s < NbS ; s++)

cudaStreamCreate(&TabS [ s ] ) ;
15 // Definition of the Grid of blocks of GPU threads

. . .
// Set the number of OpenMP threads ( to create ) to 2
omp set num threads (2 ) ;
// Create threads and start the paral le l OpenMP region

20 #pragma omp p a r a l l e l
{

// Buffer pointers (thread local variables )
f loat * cur rent = cpuInputTabAdrCurrent ;
f loat * f u tu r e = cpuInputTabAdrFuture ;
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25 f loat *tmp ;
// Stride of data processed per stream
int s t r i d e = N/NbS ;
// Computation loop (using the GPU)
for ( int i = 0 ; i < NbIter ; i++) {

30 // − Thread 0: achieves MPI communications
i f ( omp get thread num () == 0) {

MPI Sendrecv ( current , // MPI comms. (sync . op)
N, MPI FLOAT, dest , 0 ,
future ,

35 N, MPI FLOAT, dest , 0 , . . . ) ;
// − Thread 1: achieves the streamed GPU sequence (GPU

computations
// and CPU/GPU data transfers )
} else i f ( omp get thread num () == 1) {

for ( int s = 0 ; s < NbS ; s++) { // Start a l l data transfers
:

40 cudaMemcpyAsync ( gpuInputTabAdr + s * s t r i d e , // CPU −−> GPU
cur rent + s * s t r i d e , // (async . ops)
s izeof ( f loat ) * s t r i d e ,
cudaMemcpyHostToDevice ,
TabS [ s ] ) ;

45 }
for ( int s = 0 ; s < NbS ; s++) { // Start a l l GPU comps. (async

. )
gpuKernel k1<<<Dg, Db, 0 , TabS [ s]>>>(gpuInputTabAdr + s * s t r i d e

) ;
}
cudaThreadSynchronize ( ) ; // Wait a l l threads are

ended
50 // IF there i s (now) a result to transfer from the GPU to the

CPU:
cudaMemcpy( cpuResTabAdr , // Data transfers :

gpuResAdr , // GPU−−> CPU (sync . op)
s izeof ( f loat ) ,
cudaMemcpyDeviceToHost ) ;

55 }
// − Wait for both threads have achieved their iteration tasks
#pragma omp b a r r i e r
// − Each thread permute i t s local buffer pointers
tmp = current ; cur rent = fu tu r e ; f u tu r e = tmp ;

60 } // End of computation loop
} // End of OpenMP paral le l region
. . .
// Destroy the streams
for ( int s = 0 ; s < NbS ; s++)

65 cudaStreamDestroy (TabS [ s ] ) ;
. . .

Listing 7.3 introduces the generic MPI+OpenMP+CUDA code explicitly
overlapping MPI communications with streamed GPU sequences. Efficient us-
age of CUDA streams requires to execute asynchronous CPU/GPU data trans-
fers, that needs to read page-locked data in CPU memory. So, CPU memory
allocations on lines 6 and 7 are implemented with cudaHostAlloc instead
of the basic malloc function. Then, NbS streams are created on lines 12–14.
Usually we create 16 streams: the maximum number supported by CUDA.

An OpenMP parallel region including two threads is implemented on lines
17–61 of Listing 7.3, similarly to the previous algorithm (see Listing 7.2). Code
of thread 0 achieving MPI communication is unchanged, but code of thread
1 is now using streams. Following NVIDIA recommandations, we have first
implemented a loop starting NbS asynchronous data transfers (lines 39–45):



Development methodologies for GPU and cluster of GPUs 117

transferring N/NbS data on each stream. Then we have implemented a second
loop (lines 46–48), starting asynchronous executions of NbS grids of blocks of
GPU threads (one per stream). Data transfers and kernel executions on the
same stream are synchronized by CUDA and the GPU. So, each kernel exe-
cution will start after its data will be transferred into the GPU memory, and
the GPU scheduler ensures to start some kernel executions as soon as the first
data transfers are achieved. Then, next data transfers will be overlapped with
GPU computations. After the kernel calls, on the different streams, we wait
for the end of all GPU threads previously run, calling an explicit synchroniza-
tion function on line 49. This synchronization is not mandatory, but it will
make the implementation more robust and will facilitate the debugging steps:
all GPU computations run by the OpenMP thread number 1 will be achieved
before this thread will enter a new loop iteration, or before the computation
loop will be ended.

If a partial result has to be transferred from GPU to CPU memory at
the end of each loop iteration (for example the result of one reduction per
iteration), this transfer is achieved synchronously on the default stream (no
particular stream is specified) on lines 51–54. Availability of the result val-
ues is ensured by the synchronization implemented on line 49. However, if a
partial result has to be transferred on the CPU on each stream, then NbS
asynchronous data transfers could be started in parallel (one per stream),
and should be implemented before the synchronization operation on line 49.
The end of the computation loop includes a synchronization barrier of the
two OpenMP threads, waiting they have finished to access the different data
buffers in the current iteration. Then, each OpenMP thread exchanges its local
buffer pointers, like in the previous algorithm. However, after the computation
loop, we have added the destruction of the CUDA streams (lines 63–65).

Finally, CUDA streams have been used to extend Listing 7.2 with re-
spect to its global scheme. Listing 7.3 still creates an OpenMP parallel region,
with two CPU threads, one in charge of MPI communications, and the other
managing data transfers and GPU computations. Unfortunately, using GPU
streams require to be able to split a GPU computation in independent sub-
parts, working on independent subsets of data. Listing 7.3 is not so generic
than Listing 7.2.

7.2.4 Interleaved communications-transfers-computations over-
lapping

Many algorithms do not support to split data transfers and kernel calls,
and can not exploit CUDA streams. For example, when each GPU thread
requires to access some data spread in the global set of transferred data.
Then, it is possible to overlap internode CPU communications and CPU/GPU
data transfers and GPU computations, if the algorithm achieves computation-
communication iterations and if we can interleave these iterations. At iteration
k: CPUs exchange data Dk, each CPU/GPU couple transfers data Dk, and
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each GPU achieves computations on data Dk−1 (see Figure 7.4). Compared to
the previous strategies, this strategy requires twice as many CPU data buffers
and twice as many GPU buffers.

Listing 7.4: Generic scheme explicitly overlapping MPI communications,
CUDA CPU/GPU transfers and CUDA GPU computations, interleaving
computation-communication iterations

// Input data and result variables and arrays (example with
// f loat datatype , 1D input arrays , and scalar results )
f loat *cpuInputTabAdrCurrent , *cpuInputTabAdrFuture ;
f loat *gpuInputTabAdrCurrent , *gpuInputTabAdrFuture ;

5 f loat *cpuResTabAdr , *gpuResAdr ;

// CPU and GPU array al locations
cpuInputTabAdrCurrent = malloc ( s izeof ( f loat ) *N) ;
cpuInputTabAdrFuture = malloc ( s izeof ( f loat ) *N) ;

10 cudaMalloc(&gpuInputTabAdrCurrent , s izeof ( f loat ) *N) ;
cudaMalloc(&gpuInputTabAdrFuture , s izeof ( f loat ) *N) ;
cpuResTabAdr = malloc ( s izeof ( f loat ) *NbIter ) ;
cudaMalloc(&gpuResAdr , s izeof ( f loat ) ) ;

15 // Definition of the Grid of blocks of GPU threads
dim3 Dg , Db; Dg . x = . . .
// Indexes of source and destination MPI processes
int dest , s r c ; dest = . . .

20 // Set the number of OpenMP threads ( to create ) to 2
omp set num threads (3 ) ;
// Create threads and start the paral le l OpenMP region
#pragma omp p a r a l l e l
{

25 // Buffer pointers (thread local variables )
f loat * cpuCurrent = cpuInputTabAdrCurrent ;
f loat * cpuFuture = cpuInputTabAdrFuture ;
f loat *gpuCurrent = gpuInputTabAdrCurrent ;
f loat *gpuFuture = gpuInputTabAdrFuture ;

30 f loat *tmp ;

// Computation loop on : NbIter + 1 iteration
for ( int i = 0 ; i < NbIter + 1 ; i++) {

// − Thread 0: achieves MPI communications
35 i f ( omp get thread num () == 0) {

i f ( i < NbIter ) {
MPI Sendrecv ( cpuCurrent , // MPI comms. (sync . op)

N, MPI FLOAT, dest , 0 ,
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cpuFuture ,
40 N, MPI FLOAT, dest , 0 , . . . ) ;

}
// − Thread 1: achieves the CPU/GPU data transfers
} else i f ( omp get thread num () == 1) {

i f ( i < NbIter ) {
45 cudaMemcpy( gpuFuture , cpuCurrent , // Data transfer :

s izeof ( f loat ) *N, // CPU −−> GPU (sync . op
)

cudaMemcpyHostToDevice ) ;
}

// − Thread 2: achieves the GPU computations and the result
transfer

50 } else i f ( omp get thread num () == 2) {
i f ( i > 0) {

gpuKernel k1<<<Dg,Db>>>(gpuCurrent ) ; // GPU comp. (async . op)
// IF there i s (now) a result to transfer from GPU to CPU:
cudaMemcpy( cpuResTabAdr + ( i −1) , // Data transfer :

55 gpuResAdr , s izeof ( f loat ) , // GPU−−> CPU (sync . op
)

cudaMemcpyDeviceToHost ) ;
}

}
// − Wait for both threads have achieved their iteration tasks

60 #pragma omp b a r r i e r
// − Each thread permute i t s local buffer pointers
tmp = cpuCurrent ; cpuCurrent = cpuFuture ; cpuFuture = tmp ;
tmp = gpuCurrent ; gpuCurrent = gpuFuture ; gpuFuture = tmp ;

} // End of computation loop
65 } // End of OpenMP paral le l region

. . .

Listing 7.4 introduces the generic code of a MPI+OpenMP+CUDA imple-
mentation, explicitly interleaving computation-communication iterations and
overlapping MPI communications, CUDA CPU/GPU transfers and CUDA
GPU computations. As in the previous algorithms, we declare two CPU in-
put data arrays (current and future version) on line 3, but we also declare
two GPU input data arrays on line 4. On lines 8–11, these four data arrays
are allocated, using malloc and cudaMalloc. We do not need to allocate
page-locked memory space. On lines 23–65 we create an OpenMP parallel
region, configured to run three threads (see line 21). Lines 26–30 are dec-
larations of thread local pointers on data arrays and variables (each thread
will use its own pointers). On line 33, the three threads enter a computation
loop of NbIter + 1 iterations. We need to run one more iteration than with
previous algorithms.

Lines 34–41 are the MPI communications, achieved by the thread num-
ber 0. They send the current CPU input data array to another CPU, and
receive the future CPU input data array from another CPU, like in previ-
ous algorithms. But this thread achieves communications only during the first
NbIter iterations. Lines 43–48 are the CPU to GPU input data transfers,
achieved by thread number 1. These data transfers are run in parallel of MPI
communications. They are run during the first NbIter iterations, and trans-
fer current CPU input data array into the future GPU data array. Lines 50–57
correspond to the code run by thread number 3. They start GPU computa-
tions, to process the current GPU input data array, and if necessary transfer
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a GPU result at an index of the CPU result array. These GPU computa-
tions and result transfers are run during the last NbIter iterations: the GPU
computations have to wait the first data transfer is ended before to start to
process any data, and can not run during the first iteration. So, the activity of
the third thread is shifted of one iteration compared to the activities of other
threads. Moreover, the address of the current GPU input data array has to be
passed as a parameter of the kernel call on line 52, in order the GPU threads
access the right data array. Like in previous algorithms the GPU result is
copied at one index of the CPU result array, in lines 53–56, but due to the
shift of the third thread activity this index is now (i - 1).

Line 60 is a synchronization barrier of the three OpenMP threads, followed
by a pointer permutation of local pointers on current and future data arrays,
on line 62 and 63. Each thread waits for the completion of other threads to
use the data arrays, and then permutes its data array pointers before to enter
a new loop iteration.

This complete overlap of MPI communications and CPU/GPU data trans-
fers and GPU computations, is not too complex to implement, and can be a
solution when GPU computations are not adapted to use CUDA streams:
when GPU computations can not be split in subparts working on indepen-
dent subsets of input data. However, it requires to run one more iterations
(a total of NbIter + 1 iterations). Then, if the number of iterations is very
small, it could be more interesting not to attempt to overlap CPU/GPU data
transfers and GPU computations, and to implement Listing 7.2.

7.2.5 Experimental validation

Experimentation testbed

Two clusters located at SUPELEC in Metz (France) have been used for
the entire set of experiments presented in this chapter:

� The first consists of 17 nodes with an Intel Nehalem quad-core processor
at 2.67Ghz, 6 Gb RAM and an NVIDIA GeForce GTX480 GPU, each.

� The second consists of 16 nodes with an Intel core2 dual-core processor
at 2.67Ghz, 4 Gb RAM and an NVIDIA GeForce GTX580 GPU, each

Both clusters have a Gigabit Ethernet interconnection network that is con-
nected through a DELL Power Object 5324 switch. The two switches are
linked twice, insuring the interconnection of the two clusters. The software
environment consists of a Linux Fedora 64bit OS (kernel v. 2.6.35), GNU C
and C++ compilers (v. 4.5.1) and the CUDA library (v. 4.2).

Validation of the synchronous approach

We have experimented our approach of synchronous parallel algorithms
with a classic block cyclic algorithm for dense matrix multiplication. This
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FIGURE 7.5: Experimental performances of different synchronous algorithms
computing a dense matrix product

problem requires to split two input matrices (A and B) on a ring of computing
nodes, and to establish a circulation of the slices of A matrix on the ring (B
matrix partition does not evolve during all the run). Compared to our generic
algorithms, there is no partial result to transfer from GPU to CPU at the end
of each computing iteration. The part of the result matrix computed on each
GPU is transferred on the CPU at the end of the computation loop.

We have first implemented a synchronous version without any overlap of
MPI communications, CPU/GPU data transfers, and GPU computations. We
have added some synchronizations in the native overlapping version in order
to avoid any overlap. We have measured the performance achieved on our clus-
ter with NVIDIA GTX480 GPUs and matrices sizes of 4096×4096, and we
have obtained the curves in Figure 7.5 labeled no-ovlp. We observe that per-
formance increases when the number of processor increases. Of course, there
is a significant increase in cost when comparing a single node (without any
MPI communication) with two nodes (starting to use MPI communications).
But beyond two nodes we get a classical performance curve.

Then, we implemented and experimented Listing 7.1, see ovlp-native in
Figure 7.5. The native overlap of MPI communications with asynchronous
run of CUDA kernels appears efficient. When the number of nodes increases
the ratio of the MPI communications increases a lot (because the computation
times decrease a lot). So, there is not a lot of GPU computation time that
remains to be overlapped, and both no-ovlp and ovlp-native tend to the same
limit. Already, the native overlap performed in Listing 7.1 achieves a high
level of performance very quickly, using only four nodes. Beyond four nodes, a
faster interconnection network would be required for a performance increase.

Finally, we implemented Listing 7.2, overlapping MPI communications
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with a GPU sequence including both CPU/GPU data transfers and GPU
computations, see ovlp-GPUsequence in Figure 7.5. From four up to sixteen
nodes it achieves better performances than ovlp-native: we better overlap MPI
communications. However, this parallelization mechanism has more overhead:
OpenMP threads have to be created and synchronized. Only for two nodes it
is less efficient than the native overlapping algorithm. Beyond two nodes, the
CPU multithreading overhead seems compensated. Listing 7.2 requires more
time for the implemention and can be more complex to maintain, but such
extra development cost is justified if we are looking for better performance.

7.3 General scheme of asynchronous parallel code with
computation/communication overlapping

In the previous part, we have seen how to efficiently implement overlap
of computations (CPU and GPU) with communications (GPU transfers and
inter-node communications). However, we have previously shown that for some
parallel iterative algorithms, it is sometimes even more efficient to use an
asynchronous scheme of iterations [3, 4, 11]. In that case, the nodes do not
wait for each others but they perform their iterations using the last external
data they have received from the other nodes, even if this data was produced
before the previous iteration on the other nodes.

Formally, if we denote by f = (f1, ..., fn) the function representing the
iterative process and by xt = (xt1, ..., x

t
n) the values of the n elements of the

system at iteration t, we pass from a synchronous iterative scheme of the form:

Algorithm 4: Synchronous iterative scheme

1 x0 = (x0
1, ..., x

0
n);

2 for t = 0, 1, ... do
3 for i = 1, ..., n do
4 xt+1

i = fi(x
t
1, ..., x

t
i, ..., x

t
n);

5 end

6 end
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to an asynchronous iterative scheme of the form:

Algorithm 5: Asynchronous iterative scheme

1 x0 = (x0
1, ..., x

0
n);

2 for t = 0, 1, ... do
3 for i = 1, ..., n do

4 xt+1
i =

{
xti if i is not updated at iteration i

fi(x
si1(t)
1 , ..., x

sin(t)
n ) if i is updated at iteration i

5 end

6 end

where sij(t) is the iteration number of the production of the value xj of
element j that is used on element i at iteration t (see for example [9, 12]
for further details). Such schemes are called AIAC for Asynchronous Iter-
ations and Asynchronous Communications. They combine two aspects that
are respectively different computation speeds of the computing elements and
communication delays between them.

The key feature of such algorithmic schemes is that they may be faster
than their synchronous counterparts due to the implied total overlap of com-
putations with communications: in fact, this scheme suppresses all the idle
times induced by nodes synchronizations between each iteration.

However, the efficiency of such a scheme is directly linked to the frequency
at which new data arrives on each node. Typically, if a node receives newer
data only every four or five local iterations, it is strongly probable that the
evolution of its local iterative process will be slower than if it receives data at
every iteration. The key point here is that this frequency does not only depend
on the hardware configuration of the parallel system but it also depends on
the software that is used to implement the algorithmic scheme.

The impact of the programming environments used to implement asyn-
chronous algorithms has already been investigated in [5]. Although the
features required to efficiently implement asynchronous schemes have not
changed, the available programming environments and computing hardware
have evolved, in particular now GPUs are available. So, there is a need to re-
consider the implementation schemes of AIAC according to the new de facto
standards for parallel programming (communications and threads) as well as
the integration of the GPUs. One of the main objective here is to obtain a
maximal overlap between the activities of the three types of devices that are
the CPU, the GPU and the network. Moreover, another objective is to present
what we think is the best compromise between the simplicity of the implemen-
tation and its maintainability on one side and its performance on the other
side. This is especially important for industries where implementation and
maintenance costs are strong constraints.

For the sake of clarity, we present the different algorithmic schemes in a
progressive order of complexity, from the basic asynchronous scheme to the
complete scheme with full overlap. Between these two extremes, we propose



124 Designing Scientific Applications on GPUs

a synchronization mechanism on top of our asynchronous scheme that can be
used either statically or dynamically during the application execution.

Although there exist several programming environments for inter-node
communications, multi-threading and GPU programming, a few of them have
become de facto standards, either due to their good stability, their ease of
use and/or their wide adoption by the scientific community. Therefore, as in
the previous section all the schemes presented in the following use MPI [1],
OpenMP [2] and CUDA [18]. However, there is no loss of generality as those
schemes may easily be implemented with other libraries.

Finally, in order to stay as clear as possible, only the parts of code and
variables related to the control of parallelism (communications, threads,...) are
presented in our schemes. The inner organization of data is not detailed as it
depends on the application. We only consider that we have two data arrays
(previous version and current version) and communication buffers. However, in
most of the cases, those buffers can correspond to the data arrays themselves
to avoid data copies.

7.3.1 A basic asynchronous scheme

The first step toward our complete scheme is to implement a basic asyn-
chronous scheme that includes an actual overlap of the communications with
the computations. In order to ensure that the communications are actually
performed in parallel of the computations, it is necessary to use different
threads. It is important to remember that asynchronous communications pro-
vided in communication libraries like MPI are not systematically performed
in parallel of the computations [15, 21]. So, the logical and classical way to
implement such an overlap is to use three threads: one for computing, one
for sending and one for receiving. Moreover, since the communication is per-
formed by threads, blocking synchronous communications can be used without
deteriorating the overall performance.

In this basic version, the termination of the global process is performed
individually on each node according to their own termination. This can be
guided by either a number of iterations or a local convergence detection. The
important step at the end of the process is to perform the receptions of all
pending communications in order to ensure the termination of the two com-
munication threads.

So, the global organization of this scheme is set up in Listing 7.5.

Listing 7.5: Initialization of the basic asynchronous scheme

// Variables declaration and in i t i a l i za t ion
omp lock t lockSend ; // Controls the sendings from the computing

thread
omp lock t lockRec ; // Ensures the i n i t i a l reception of external data
char Fin i shed = 0 ; // Boolean indicating the end of the process

5 char SendsInProgress = 0 ; // Boolean indicating i f previous data
sendings are s t i l l in progress

double Threshold ; // Threshold of the residual for convergence
detection
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// Parameters reading
. . .

10

// MPI in i t i a l i za t ion
MPI In i t thread ( argc , argv , MPI THREAD MULTIPLE, &provided ) ;
MPI Comm size (MPI COMM WORLD, &nbP) ;
MPI Comm rank(MPI COMM WORLD, &numP) ;

15

// Data in i t i a l i za t ion and distribution among the nodes
. . .

// OpenMP in i t i a l i za t ion (mainly declarations and setting up of locks )
20 omp set num threads (3 ) ;

omp in i t l o ck (&lockSend ) ;
omp set lock (&lockSend ) ; // In i t i a l l y locked , unlocked to start

sendings
omp in i t l o ck (&lockRec ) ;
omp set lock (&lockRec ) ; // In i t i a l l y locked , unlocked when in i t i a l

data are received
25

#pragma omp p a r a l l e l
{

switch ( omp get thread num () ){
case COMPUTATION :

30 computations ( . . . @\emph{ r e l e van t parameters}@ . . . ) ;
break ;

case SENDINGS :
send ings ( ) ;

35 break ;

case RECEPTIONS :
r e c e p t i o n s ( ) ;
break ;

40 }
}

// Cleaning of OpenMP locks
omp tes t l ock (&lockSend ) ;

45 omp unset lock(&lockSend ) ;
omp destroy lock (&lockSend ) ;
omp tes t l ock (&lockRec ) ;
omp unset lock(&lockRec ) ;
omp destroy lock (&lockRec ) ;

50

// MPI termination
MPI Final ize ( ) ;

In this scheme, the lockRec mutex is not mandatory. It is only used to
ensure that data dependencies are actually exchanged at the first iteration of
the process. Data initialization and distribution (lines 16-17) are not detailed
here because they are directly related to the application. The important point
is that, in most cases, they should be done before the iterative process. The
computing function is given in Listing 7.6.

Listing 7.6: Computing function in the basic asynchronous scheme

// Variables declaration and in i t i a l i za t ion
int i t e r = 1 ; // Number of the current iteration
double d i f f e r e n c e ; // Variation of one element between two iterations
double r e s i d u a l ; // Residual of the current iteration

5

// Computation loop
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while ( ! F in i shed ){
// Sendings of data dependencies i f there i s no previous sending in

progress
i f ( ! SendsInProgress ){

10 // Potential copy of data to be sent in additional buffers
. . .
// Change of sending state
SendsInProgress = 1 ;
omp unset lock(&lockSend ) ;

15 }

// Blocking receptions at the f i r s t iteration
i f ( i t e r == 1){

omp set lock (&lockRec ) ;
20 }

// In i t ia l i zat ion of the residual
r e s i d u a l = 0 . 0 ;
// Swapping of data arrays (current and previous )

25 tmp = current ; // Pointers swapping to avoid
cur rent = prev ious ; // actual data copies between
prev ious = tmp ; // the two data versions
// Computation of current iteration over local data
for ( ind =0; ind<l o c a l S i z e ; ++ind ){

30 // Updating of current array using previous array
. . .
// Updating of the residual
// (max difference between two successive iterations )
d i f f e r e n c e = fabs ( cur rent [ ind ] − prev ious [ ind ] ) ;

35 i f ( d i f f e r e n c e > r e s i d u a l ){
r e s i d u a l = d i f f e r e n c e ;

}
}

40 // Checking of the end of the process ( residual under threshold )
// Other conditions can be added to the termination detection
i f ( r e s i d u a l <= Threshold ){

Fin i shed = 1 ;
omp unset lock(&lockSend ) ; // Activation of end messages sendings

45 MPI Ssend(&Finished , 1 , MPI CHAR, numP, tagEnd , MPI COMM WORLD) ;
}

// Updating of the iteration number
i t e r ++;

50 }

As mentioned above, it can be seen in line 18 of Listing 7.6 that the
lockRec mutex is used only at the first iteration to wait for the initial data
dependencies before the computations. The residual, initialized in line 23 and
computed in lines 34-37, is defined by the maximal difference between the
elements from two consecutive iterations. It is classically used to detect the
local convergence of the process on each node. In the more complete schemes
presented in the sequel, a global termination detection that takes the states
of all the nodes into account will be exhibited.

Finally, the local convergence is tested and updated when necessary. In
line 44, the lockSend mutex is unlocked to allow the sending function to
send final messages to the dependency nodes. Those messages are required
to keep the reception function alive until all the final messages have been
received. Otherwise, a node could stop its reception function whereas other
nodes are still trying to communicate with it. Moreover, a local sending of a
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final message to the node itself is required (line 45) to ensure that the reception
function will not stay blocked in a message probing (see Listing 7.8, line 11).
This may happen if the node receives the final messages from its dependencies
before being itself in local convergence.

All the messages but this final local one are performed in the sending
function described in Listing 7.7.

The main loop is only conditioned by the end of the computing process
(line 4). At each iteration, the thread waits for the permission from the com-
puting thread (according to the lockSend mutex). Then, data are sent with
blocking synchronous communications. The SendsInProgress boolean al-
lows the computing thread to skip data sendings as long as a previous sending
is in progress. This skip is possible due to the nature of asynchronous algo-
rithms that allows such message loss or message miss. After the main loop,
the final messages are sent to the dependencies of the node.

Listing 7.7: Sending function in the basic asynchronous scheme

// Variables declaration and in i t i a l i za t ion
. . .

while ( ! F in i shed ){
5 omp set lock (&lockSend ) ; // Waiting for signal from the comp. thread

i f ( ! F in i shed ){
// Blocking synchronous sends to a l l dependencies
for ( i =0; i<nbDeps ; ++i ){

MPI Ssend(&dataToSend [ deps [ i ] ] , nb data , type o f data , deps [ i ] ,
tagCom , MPI COMM WORLD) ;

10 }
SendsInProgress = 0 ; // Indicates that the sendings are done

}
}
// At the end of the process , sendings of f ina l messages

15 for ( i =0; i<nbDeps ; ++i ){
MPI Ssend(&Finished , 1 , MPI CHAR, deps [ i ] , tagEnd , MPI COMM WORLD) ;

}

The last function, detailed in Listing 7.8, does all the messages receptions.

Listing 7.8: Reception function in the basic asynchronous scheme

// Variables declaration and in i t i a l i za t ion
char countRece ipts = 0 ; // Boolean indicating whether receptions are

counted or not
int nbEndMsg = 0 ; // Number of end messages received
int a r r i v ed = 0 ; // Boolean indicating i f a message i s arrived

5 int srcNd ; // Source node of the message
int s i z e ; // Message size

// Main loop of receptions
while ( ! F in i shed ){

10 // Waiting for an incoming message
MPI Probe (MPI ANY SOURCE, MPI ANY TAG, MPI COMM WORLD, &s ta tu s ) ;
i f ( ! F in i shed ){

// Management of data messages
switch ( s t a tu s .MPI TAG){

15 case tagCom : // Management of data messages
srcNd = sta tu s .MPI SOURCE; // Get the source node of the

message
// Actual data reception in the corresponding buffer



128 Designing Scientific Applications on GPUs

MPI Recv ( dataBufferOf ( srcNd ) , nbDataOf ( srcNd ) , dataTypeOf ( srcNd
) , srcNd , tagCom , MPI COMM WORLD, &s ta tu s ) ;

// Unlocking of the computing thread when data are received
from a l l dependencies

20 i f ( countRece ipts == 1 && . . . @\emph{ r e c e p t i o n s from ALL
dependenc ies }@ . . . ) {

omp unset lock(&lockRec ) ;
countRece ipts = 0 ; // No more counting after f i r s t iteration

}
break ;

25 case tagEnd : // Management of end messages
// Actual end message reception in dummy buffer
MPI Recv ( dummyBuffer , 1 , MPI CHAR, s t a tu s .MPI SOURCE, tagEnd ,

MPI COMM WORLD, &s ta tu s ) ;
nbEndMsg++;

}
30 }
}

// Reception of pending messages and counting of end messages
do{ // Loop over the remaining incoming/waited messages

35 MPI Probe (MPI ANY SOURCE, MPI ANY TAG, MPI COMM WORLD, &s ta tu s ) ;
MPI Get count(&status , MPI CHAR, &s i z e ) ;
// Actual reception in dummy buffer
MPI Recv ( dummyBuffer , s i z e , MPI CHAR, s t a tu s .MPI SOURCE, s t a tu s .

MPI TAG, MPI COMM WORLD, &s ta tu s ) ;
i f ( s t a tu s .MPI TAG == tagEnd ){ // Counting of end messages

40 nbEndMsg++;
}
MPI Iprobe (MPI ANY SOURCE, MPI ANY TAG, MPI COMM WORLD, &arr ived , &

s ta tu s ) ;
}while ( a r r i v ed == 1 | | nbEndMsg < nbDeps + 1) ;

As in the sending function, the main loop of receptions is done while the
iterative process is not Finished. In line 11, the thread waits until a message
arrives on the node. Then, it performs the actual reception and the correspond-
ing subsequent actions (potential data copies for data messages and counting
for end messages). Lines 20-23 check that all data dependencies have been
received before unlocking the lockRec mutex. As mentioned before, they are
not mandatory and are included only to ensure that all data dependencies are
received at the first iteration. Lines 25-28 are required to manage end mes-
sages that arrive on the node before it reaches its own termination process. As
the nodes are not synchronized, this may happen. Finally, lines 34-43 perform
the receptions of all pending communications, including the remaining end
messages (at least the one from the node itself).

So, with those algorithms, we obtain a quite simple and efficient asyn-
chronous iterative scheme. It is interesting to notice that GPU computing
can be easily included in the computing thread. This will be fully addressed
in paragraph 7.3.3. However, before presenting the complete asynchronous
scheme with GPU computing, we have to detail how our initial scheme can
be made synchronous.
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7.3.2 Synchronization of the asynchronous scheme

The presence of synchronization in the previous scheme may seem contra-
dictory to our goal, and obviously, it is neither the simplest way to obtain
a synchronous scheme nor the most efficient (as presented in Section 7.2).
However, it is necessary for our global convergence detection strategy. Recall
that the global convergence is the extension of the local convergence concept
to all the nodes. This implies that all the nodes have to be in local conver-
gence at the same time to achieve global convergence. Typically, if we use the
residual and a threshold to stop the iterative process, all the nodes have to
continue their local iterative process until all of them obtain a residual under
the threshold.

In our context, the interest of being able to dynamically change the oper-
ating mode (sync/async) during the process execution, is that this strongly
simplifies the global convergence detection. In fact, our past experience in the
design and implementation of global convergence detection in asynchronous
algorithms [5–7], have led us to the conclusion that although a decentralized
detection scheme is possible and may be more efficient in some situations, its
much higher complexity is an obstacle to actual use in practice, especially in
industrial contexts where implementation/maintenance costs are strong con-
straints. Moreover, although the decentralized scheme does not slow down
the computations, it requires more iterations than a synchronous version and
thus may induce longer detection times in some cases. So, the solution we
present below is a good compromise between simplicity and efficiency. It con-
sists in dynamically changing the operating mode between asynchronous and
synchronous during the execution of the process in order to check the global
convergence. This is why we need to synchronize our asynchronous scheme.

In each algorithm of the initial scheme, we only exhibit the additional code
required to change the operating mode.

Listing 7.9: Initialization of the synchronized scheme

// Variables declarations and in i t i a l i za t ion
. . .
omp lock t l o c k S t a t e s ; // Controls the synchronous exchange of local

states
omp lock t l o c k I t e r ; // Controls the synchronization at the end of

each iteration
5 char localCV = 0 ; // Boolean indicating whether the local

stabi l izat ion i s reached or not
int nbOtherCVs = 0 ; // Number of other nodes being in local

stabi l izat ion

// Parameters reading
. . .

10 // MPI in i t i a l i za t ion
. . .
// Data in i t i a l i za t ion and distribution among the nodes
. . .
// OpenMP in i t i a l i za t ion (mainly declarations and setting up of locks )

15 . . .
omp in i t l o ck (& l o ck S t a t e s ) ;
omp set lock (& l o c k S t a t e s ) ; // In i t i a l l y locked , unlocked when a l l

state messages are received
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omp in i t l o ck (& l o c k I t e r ) ;
omp set lock (& l o c k I t e r ) ; // In i t i a l l y locked , unlocked when a l l ”end

of iteration” messages are received
20

// Threads launching
#pragma omp p a r a l l e l
{

switch ( omp get thread num () ){
25 . . .

}
}

// Cleaning of OpenMP locks
30 . . .

omp te s t l ock (& lo c kS t a t e s ) ;
omp unset lock(& l o c k S t a t e s ) ;
omp destroy lock (& l o c k S t a t e s ) ;
omp te s t l ock (& l o c k I t e r ) ;

35 omp unset lock(& l o c k I t e r ) ;
omp destroy lock (& l o c k I t e r ) ;

// MPI termination
MPI Final ize ( ) ;

As can be seen in Listing 7.9, the synchronization implies two additional
mutex. The lockStates mutex is used to wait for the receptions of all
state messages coming from the other nodes. As shown in Listing 7.10, those
messages contain only a boolean indicating for each node if it is in local
convergence. So, once all the states are received on a node, it is possible
to determine if all the nodes are in local convergence, and thus to detect
the global convergence. The lockIter mutex is used to synchronize all the
nodes at the end of each iteration. There are also two new variables that
respectively represent the local state of the node (localCV) according to the
iterative process (convergence) and the number of other nodes that are in local
convergence (nbOtherCVs).

The computation thread is where most of the modifications take place, as
shown in Listing 7.10.

Listing 7.10: Computing function in the synchronized scheme

// Variables declarations and in i t i a l i za t ion
. . .

// Computation loop
5 while ( ! F in i shed ){

// Sendings of data dependencies at @\emph{each}@ iteration
// Potential copy of data to be sent in additional buffers
. . .
omp unset lock(&lockSend ) ;

10

// Blocking receptions at @\emph{each}@ iteration
omp set lock (&lockRec ) ;

// Local computation
15 // ( in i t of residual , arrays swapping and iteration computation)

. . .

// Checking of the stabi l izat ion of the local process
// Other conditions than the residual can be added

20 i f ( r e s i d u a l <= Threshold ){
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localCV = 1 ;
} else {

localCV = 0 ;
}

25

// Global exchange of local states of the nodes
for ( ind =0; ind<nbP ; ++ind ){

i f ( ind != numP){
MPI Ssend(&localCV , 1 , MPI CHAR, ind , tagState , MPI COMM WORLD) ;

30 }
}

// Waiting for the state messages receptions from the other nodes
omp set lock (& l o c k S t a t e s ) ;

35

// Determination of global convergence ( i f a l l nodes are in local CV
)

i f ( localCV + nbOtherCVs == nbP){
// Entering global CV state
Fin i shed = 1 ;

40 // Unlocking of sending thread to start sendings of end messages
omp unset lock(&lockSend ) ;
MPI Ssend(&Finished , 1 , MPI CHAR, numP, tagEnd , MPI COMM WORLD) ;

} else {
// Resetting of information about the states of the other nodes

45 . . .
// Global barrier at the end of each iteration during the process
for ( ind =0; ind<nbP ; ++ind ){

i f ( ind != numP){
MPI Ssend(&Finished , 1 , MPI CHAR, ind , t ag I t e r , MPI COMM WORLD

) ;
50 }

}
omp set lock (& l o c k I t e r ) ;

}

55

// Updating of the iteration number
i t e r ++;

}

Most of the added code is related to the waiting for specific communica-
tions. Between lines 6 and 7, the use of the flag SendsInProgress is no
longer needed since the sends are performed at each iteration. In line 12, the
thread waits for the data receptions from its dependencies. In lines 26-34, the
local states are determined and exchanged among all nodes. A new message
tag (tagState) is required for identifying those messages. In line 37, the
global termination state is determined. When it is reached, lines 38-42 change
the Finished boolean to stop the iterative process, and send the end mes-
sages. Otherwise each node resets its local state information about the other
nodes and a global barrier is done between all the nodes at the end of each
iteration with another new tag (tagIter). That barrier is needed to ensure
that data messages from successive iterations are actually received during the
same iteration on the destination nodes. Nevertheless, it is not useful at the
termination of the global process as it is replaced by the global exchange of
end messages.

There is no big modification induced by the synchronization in the sending
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function. The only change could be the suppression of line 11 that is not useful
in this case. Apart from that, the function stays the same as in Listing 7.7.

In the reception function, given in Listing 7.11, there are mainly two in-
sertions (in lines 19-30 and 31-40), corresponding to the additional types of
messages to receive. There is also the insertion of three variables that are
used for the receptions of the new message types. In lines 24-29 and 34-39 are
located messages counting and mutex unlocking mechanisms that are used to
block the computing thread at the corresponding steps of its execution. They
are similar to the mechanism used for managing the end messages at the end
of the entire process. Line 23 directly updates the number of other nodes that
are in local convergence by adding the received state of the source node. This
is possible due to the encoding that is used to represent the local convergence
(1) and the non-convergence (0).

Listing 7.11: Reception function in the synchronized scheme

// Variables declarations and in i t i a l i za t ion
. . .
int nbStateMsg = 0 ; // Number of local state messages received
int nbIterMsg = 0 ; // Number of ”end of iteration” messages received

5 char recvdState ; // Received state from another node (0 or 1)

// Main loop of receptions
while ( ! F in i shed ){

// Waiting for an incoming message
10 MPI Probe (MPI ANY SOURCE, MPI ANY TAG, MPI COMM WORLD, &s ta tu s ) ;

i f ( ! F in i shed ){
switch ( s t a tu s .MPI TAG){ // Actions related to message type

case tagCom : // Management of data messages
. . .

15 break ;
case tagEnd : // Management of termination messages

. . .
break ;

case tagState : // Management of local state messages
20 // Actual reception of the message

MPI Recv(&recvdState , 1 , MPI CHAR, s t a tu s .MPI SOURCE, tagState ,
MPI COMM WORLD, &s ta tu s ) ;

// Updates of numbers of stabi l ized nodes and received state
msgs

nbOtherCVs += recvdState ;
nbStateMsg++;

25 // Unlocking of the computing thread when states of a l l other
nodes are received

i f ( nbStateMsg == nbP−1){
nbStateMsg = 0 ;
omp unset lock(& l o c k S t a t e s ) ;

}
30 break ;

case t a g I t e r : // Management of ”end of iteration” messages
// Actual reception of the message in dummy buffer
MPI Recv ( dummyBuffer , 1 , MPI CHAR, s t a tu s .MPI SOURCE, tag I t e r ,

MPI COMM WORLD, &s ta tu s ) ;
nbIterMsg++; // Update of the nb of iteration messages

35 // Unlocking of the computing thread when iteration messages
are received from a l l other nodes

i f ( nbIterMsg == nbP − 1){
nbIterMsg = 0 ;
omp unset lock(& l o c k I t e r ) ;

}
40 break ;
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}
}

}

45 // Reception of pending messages and counting of end messages
do{ // Loop over the remaining incoming/waited messages

. . .
}while ( a r r i v ed == 1 | | nbEndMsg < nbDeps + 1) ;

Now that we can synchronize our asynchronous scheme, the final step
is to dynamically alternate the two operating modes in order to regularly
check the global convergence of the iterative process. This is detailed in the
following paragraph together with the inclusion of GPU computing in the final
asynchronous scheme.

7.3.3 Asynchronous scheme using MPI, OpenMP and
CUDA

As mentioned above, the strategy proposed to obtain a good compromise
between simplicity and efficiency in the asynchronous scheme is to dynamically
change the operating mode of the process. A good way to obtain a maximal
simplification of the final scheme while preserving good performance is to
perform local and global convergence detections only in synchronous mode.
Moreover, as two successive iterations are sufficient in synchronous mode to
detect local and global convergences, the key is to alternate some asynchronous
iterations with two synchronous iterations until convergence.

The last problem is to decide when to switch from the asynchronous to the
synchronous mode. Here again, for the sake of simplicity, any asynchronous
mechanism for detecting such instant is avoided and we prefer to use a mecha-
nism that is local to each node. Obviously, that local system must rely neither
on the number of local iterations done nor on the local convergence. The for-
mer would slow down the fastest nodes according to the slowest ones. The
latter would provoke too much synchronization because the residuals on all
nodes commonly do not evolve in the same way and, in most cases, there is a
convergence wave phenomenon throughout the elements. So, a good solution
is to insert a local timer mechanism on each node with a given initial duration.
Then, that duration may be modified during the execution according to the
successive results of the synchronous sections.

Another problem induced by entering synchronous mode from the asyn-
chronous one is the possibility to receive some data messages from previ-
ous asynchronous iterations during synchronous iterations. This could lead to
deadlocks. In order to avoid this, a wait of the end of previous send is added to
the transition between the two modes. This is implemented by replacing the
variable SendsInProgress by a mutex lockSendsDone which is unlocked
once all the messages have been sent in the sending function. Moreover, it is
also necessary to stamp data messages (by the function stampData) with
a Boolean indicating whether they have been sent during a synchronous or
asynchronous iteration. Then, the lockRec mutex is unlocked only after to



134 Designing Scientific Applications on GPUs

the complete reception of data messages from synchronous iterations. The
message ordering of point-to-point communications in MPI together with the
barrier at the end of each iteration ensure two important properties of this
mechanism. First, data messages from previous asynchronous iterations will
be received but not taken into account during synchronous sections. Then,
a data message from a synchronous iteration cannot be received in another
synchronous iteration. In the asynchronous sections, no additional mechanism
is needed as there are no such constraints concerning the data receptions.

Finally, the required modifications of the previous scheme are mainly re-
lated to the computing thread. Small additions or modifications are also re-
quired in the main process and the other threads.

In the main process, two new variables are added to store respectively the
main operating mode of the iterative process (mainMode) and the duration
of asynchronous sections (asyncDuration). Those variables are initialized
by the programmer. The lockSendsDone mutex is also declared, initialized
(locked) and destroyed with the other mutex in this process.

In the computing function, shown in Listing 7.12, the modifications con-
sist of the insertion of the timer mechanism and of the conditions to differ-
entiate the actions to be done in each mode. Some additional variables are
also required to store the current operating mode in action during the ex-
ecution (curMode), the starting time of the current asynchronous section
(asyncStart) and the number of successive synchronous iterations done
(nbSyncIter).

Listing 7.12: Computing function in the final asynchronous scheme

// Variables declarations and in i t i a l i za t ion
. . .
OpMode curMode = SYNC; // Current operating mode (always begin in sync

)
double asyncStart ; // Starting time of the current async section

5 int nbSyncIter = 0 ; // Number of sync iterations done in async mode

// Computation loop
while ( ! F in i shed ){

// Determination of the dynamic operating mode
10 i f ( curMode == ASYNC){

// Entering synchronous mode when asyncDuration i s reached
@% // ( additional conditions can be specif ied i f needed)
@ i f (MPI Wtime ( ) − asyncStart >= asyncDuration ){

// Waiting for the end of previous sends before starting sync
mode

15 omp set lock (&lockSendsDone ) ;
curMode = SYNC; // Entering synchronous mode
stampData ( dataToSend , SYNC) ; // Mark data to send with sync f lag
nbSyncIter = 0 ;

}
20 } else {

// In main async mode, going back to async mode when the max
number of sync iterations are done

i f (mainMode == ASYNC){
nbSyncIter++; // Update of the number of sync iterations done
i f ( nbSyncIter == 2){

25 curMode = ASYNC; // Going back to async mode
stampData ( dataToSend , ASYNC) ; // Mark data to send
asyncStart = MPI Wtime ( ) ; // Get the async starting time
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}
}

30 }

// Sendings of data dependencies
i f ( curMode == SYNC | | ! SendsInProgress ){

. . .
35 }

// Blocking data receptions in sync mode
i f ( curMode == SYNC){

omp set lock (&lockRec ) ;
40 }

// Local computation
// ( in i t of residual , arrays swapping and iteration computation)
. . .

45

// Checking of convergences ( local & global ) only in sync mode
i f ( curMode == SYNC){

// Local convergence checking ( residual under threshold )
. . .

50 // Blocking global exchange of local states of the nodes
. . .
// Determination of global convergence ( a l l nodes in local CV)
// Stop of the iterat ive process and sending of end messages
// or Re−i n i t i a l i za t ion of state information and iteration barrier

55 . . .
}

}

// Updating of the iteration number
60 i t e r ++;
}

In the sending function, the only modification is the replacement in
line 11 of the assignment of variable SendsInProgress by the unlocking
of lockSendsDone. Finally, in the reception function, the only modification
is the insertion before line 19 of Listing 7.8 of the extraction of the stamp from
the message and its counting among the receipts only if the stamp is SYNC.

The final step to get our complete scheme using GPU is to insert the
GPU management in the computing thread. The first possibility, detailed in
Listing 7.13, is to simply replace the CPU kernel (lines 41-43 in Listing 7.12)
by a blocking GPU kernel call. This includes data transfers from the node
RAM to the GPU RAM, the launching of the GPU kernel, the waiting for
kernel completion and the results transfers from GPU RAM to node RAM.

Listing 7.13: Computing function in the final asynchronous scheme

// Variables declarations and in i t i a l i za t ion
. . .
dim3 Dg , Db; // CUDA kernel grids

5 // Computation loop
while ( ! F in i shed ){

// Determination of the dynamic operating mode, sendings of data
dependencies and blocking data receptions in sync mode

. . .
// Local GPU computation

10 // Data transfers from node RAM to GPU
CHECK CUDA SUCCESS(cudaMemcpyToSymbol (dataOnGPU , dataInRAM ,

inputsS i ze , 0 , cudaMemcpyHostToDevice ) , "Data transfer" ) ;
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. . . // There may be several data transfers : typical ly A and b in
linear problems

// GPU grid definit ion
Db. x = BLOCK SIZE X ; // BLOCK SIZE# are kernel design dependent

15 Db. y = BLOCK SIZE Y ;
Db. z = BLOCK SIZE Z ;
Dg . x = l o c a l S i z e /BLOCK SIZE X + ( l o c a l S i z e%BLOCK SIZE X ? 1 : 0) ;
Dg . y = l o c a l S i z e /BLOCK SIZE Y + ( l o c a l S i z e%BLOCK SIZE Y ? 1 : 0) ;
Dg . z = l o c a l S i z e /BLOCK SIZE Z + ( l o c a l S i z e%BLOCK SIZE Z ? 1 : 0) ;

20 // Use of shared memory (when possible )
cudaFuncSetCacheConfig ( gpuKernelName , cudaFuncCachePreferShared ) ;
// Kernel ca l l
gpuKernelName<<<Dg,Db>>>(... @\emph{ ke rne l parameters}@ . . . ) ;
// Waiting for kernel completion

25 cudaDeviceSynchronize ( ) ;
// Results transfer from GPU to node RAM
CHECK CUDA SUCCESS(cudaMemcpyFromSymbol ( resultsInRam , resultsOnGPU ,

r e s u l t s S i z e , 0 , cudaMemcpyDeviceToHost ) , "Results transfer" ) ;
// Potential post−treatment of results on the CPU
. . .

30

// Convergences checking
. . .

}

This scheme provides asynchronism through a cluster of GPUs as well
as a complete overlap of communications with GPU computations (similarly
to Section 7.2). However, the autonomy of GPU devices according to their
host can be further exploited in order to perform some computations on the
CPU while the GPU kernel is running. The nature of computations that can
be done by the CPU may vary depending on the application. For example,
when processing data streams (pipelines), pre-processing of next data item
and/or post-processing of previous result can be done on the CPU while the
GPU is processing the current data item. In other cases, the CPU can perform
auxiliary computations that are not absolutely required to obtain the result
but that may accelerate the entire iterative process. Another possibility would
be to distribute the main computations between the GPU and CPU. However,
this usually leads to poor performance increases. This is mainly due to data
dependencies that often require additional transfers between CPU and GPU.

So, if we consider that the application enables such overlap of compu-
tations, its implementation is straightforward as it consists in inserting the
additional CPU computations between lines 23 and 24 in Listing 7.13. Nev-
ertheless, such scheme is fully efficient only if the computation times on both
sides are similar.

In some cases, especially with auxiliary computations, another interesting
solution is to add a fourth CPU thread to perform them. This suppresses
the duration constraint over those optional computations as they are per-
formed in parallel of the main iterative process, without blocking it. More-
over, this scheme stays coherent with current architectures as most nodes
include four CPU cores. The algorithmic scheme of such context of complete
overlap of CPU/GPU computations and communications is described in List-
ings 7.14, 7.15 and 7.16, where we suppose that auxiliary computations use
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intermediate results of the main computation process from any previous iter-
ation. This may be different according to the application.
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Listing 7.14: Initialization of the main process of complete overlap with
asynchronism

// Variables declarations and in i t i a l i za t ion
. . .
omp lock t lockAux ; // Informs main thread about new aux results
omp lock t lockRes ; // Informs aux thread about new results

5 omp lock t lockWrite ; // Controls exclusion of results access
. . . auxRes . . . ; // Results of auxiliary computations

// Parameters reading , MPI in i t ia l i zat ion , data in i t i a l i za t ion and
distribution

. . .
10 // OpenMP in i t i a l i za t ion

. . .
omp in i t l o ck (&lockAux ) ;
omp set lock (&lockAux ) ; // Unlocked when new aux results are

available
omp in i t l o ck (&lockRes ) ;

15 omp set lock (&lockRes ) ; // Unlocked when new results are available
omp in i t l o ck (&lockWrite ) ;
omp unset lock(&lockWrite ) ; // Controls access to results from threads

#pragma omp p a r a l l e l
20 {

switch ( omp get thread num () ){
case COMPUTATION :
computations ( . . . @\emph{ r e l e van t parameters}@ . . . ) ;
break ;

25

case AUX COMPS :
auxComps ( . . . @\emph{ r e l e van t parameters}@ . . . ) ;
break ;

30 case SENDINGS :
send ings ( ) ;
break ;

case RECEPTIONS :
35 r e c e p t i o n s ( ) ;

break ;
}

}

40 // Cleaning of OpenMP locks
. . .
omp te s t l ock (&lockAux ) ;
omp unset lock(&lockAux ) ;
omp destroy lock (&lockAux ) ;

45 omp tes t l ock (&lockRes ) ;
omp unset lock(&lockRes ) ;
omp destroy lock (&lockRes ) ;
omp te s t l ock (&lockWrite ) ;
omp unset lock(&lockWrite ) ;

50 omp destroy lock (&lockWrite ) ;

// MPI termination
MPI Final ize ( ) ;
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Listing 7.15: Computing function in the final asynchronous scheme with
CPU/GPU overlap

// Variables declarations and in i t i a l i za t ion
. . .
dim3 Dg , Db; // CUDA kernel grids

5 // Computation loop
while ( ! F in i shed ){

// Determination of the dynamic operating mode, sendings of data
dependencies and blocking data receptions in sync mode

. . .
// Local GPU computation

10 // Data transfers from node RAM to GPU, GPU grid def init ion and in i t
of shared mem

CHECK CUDA SUCCESS(cudaMemcpyToSymbol (dataOnGPU , dataInRAM ,
inputsS i ze , 0 , cudaMemcpyHostToDevice ) , "Data transfer" ) ;

. . .
// Kernel ca l l
gpuKernelName<<<Dg,Db>>>(... @\emph{ ke rne l parameters}@ . . . ) ;

15 // Potential pre/post−treatments in pipeline l ike computations
. . .
// Waiting for kernel completion
cudaDeviceSynchronize ( ) ;
// Results transfer from GPU to node RAM

20 omp set lock (&lockWrite ) ; // Wait for write access to resultsInRam
CHECK CUDA SUCCESS(cudaMemcpyFromSymbol ( resultsInRam , resultsOnGPU ,

r e s u l t s S i z e , 0 , cudaMemcpyDeviceToHost ) , "Results transfer" ) ;
// Potential post−treatments in non−pipeline computations
. . .
omp unset lock(&lockWrite ) ; // Give back read access to aux thread

25 omp tes t l ock (&lockRes ) ;
omp unset lock(&lockRes ) ; // Informs aux thread of new results

// Auxiliary computations avai labi l i ty checking
i f ( omp tes t l ock (&lockAux ) ){

30 // Use auxRes to update the iterat ive process
. . . // May induce additional GPU transfers

}

// Convergences checking
35 i f ( curMode == SYNC){

// Local convergence checking and global exchange of local states
. . .
// Determination of global convergence ( a l l nodes in local CV)
i f ( cvLocale == 1 && nbCVLocales == nbP−1){

40 // Stop of the iterat ive process and sending of end messages
. . .
// Unlocking of aux thread for termination
omp tes t l ock (&lockRes ) ;
omp unset lock(&lockRes ) ;

45 } else {
// Re−i n i t i a l i za t ion of state information and iteration barrier
. . .

}
}

50 }
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Listing 7.16: Auxiliary computing function in the final asynchronous scheme
with CPU/GPU overlap

// Variables declarations and in i t i a l i za t ion
. . . auxInput . . . // Local array for input data

// Computation loop
5 while ( ! F in i shed ){

// Data copy from resultsInRam into auxInput
omp set lock (&lockRes ) ; // Waiting for new results from main comps
i f ( ! F in i shed ){

omp set lock (&lockWrite ) ; // Waiting for access to results
10 for ( ind =0; ind<r e s u l t s S i z e ; ++ind ){

auxInput [ ind ] = resultsInRam [ ind ] ;
}
omp unset lock(&lockWrite ) ; // Give back write access to main

thread
// Auxiliary computations with possible interruption at the end

15 for ( ind =0; ind<auxSize && ! Fin i shed ; ++ind ){
// Computation of auxRes array according to auxInput
. . .

}
// Informs main thread that new aux results are available in

auxData
20 omp tes t l ock (&lockAux ) ; // Ensures mutex i s locked when unlocking

omp unset lock(&lockAux ) ;
}

}

As can be seen in Listing 7.14, there are three additional mutex (lockAux,
lockRes and lockWrite) that are used respectively to inform the main
computation thread that new auxiliary results are available (lines 20-21 in
Listing 7.16 and line 29 in Listing 7.15), to inform the auxiliary thread that
new results from the main thread are available (lines 25-26 in Listing 7.15
and line 7 in Listing 7.16), and to perform exclusive accesses to the results
from those two threads (lines 20, 24 in Listing 7.15 and 9, 13 in Listing 7.16).
Also, an additional array (auxRes) is required to store the results of the
auxiliary computations as well as a local array for the input of the auxiliary
function (auxInput). That last function has the same general organization
as the send/receive ones, that is a global loop conditioned by the end of the
global process. At each iteration in this function, the thread waits for the
availability of new results produced by the main computation thread. This
avoids to perform the same computations several times with the same input
data. Then, input data of auxiliary computations is copied with a mutual
exclusion mechanism. Finally, auxiliary computations are performed. When
they are completed, the associated mutex is unlocked to signal the availability
of those auxiliary results to the main computing thread. The main thread
regularly checks this availability at the end of its iterations and takes them
into account whenever this is possible.

Finally, we obtain an algorithmic scheme allowing maximal overlap be-
tween CPU and GPU computations as well as communications. It is worth
noticing that such scheme is also usable for systems without GPUs but 4-cores
nodes.
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7.3.4 Experimental validation

As in Section 7.2, we validate the feasibility of our asynchronous scheme
with some experiments performed with a representative example of scien-
tific application. It is a three-dimensional version of the advection-diffusion-
reaction process that models the evolution of the concentrations of two chemi-
cal species in shallow waters. As this process is dynamic in time, the simulation
is performed for a given number of consecutive time steps. This implies two
nested loops in the iterative process, the outer one for the time steps and
the inner one for solving the problem at each time. Full details about this
PDE problem can be found in [20]. That two-stage iterative process implies
a few adaptations of the general scheme presented above in order to include
the outer iterations over the time steps, but the inner iterative process closely
follows the same scheme.

We show two series of experiments performed with 16 nodes of the first
cluster described in Section 7.2.5. The first one deals with the comparison of
synchronous and asynchronous computations. The second one is related to the
use of auxiliary computations. In the context of our PDE application, they
consist in the update of the Jacobian of the system.

Synchronous and asynchronous computations

The first experiment allows us to check that the asynchronous behavior
obtained with our scheme corresponds to the expected one according to its
synchronous counterpart. So, we show in Figure 7.6 the computation times
of our test application in both modes for different problem sizes. The size
shown is the number of discrete spatial elements on each side of the cube
representing the 3D volume. Moreover, for each of these elements, there are
the concentrations of the two chemical species considered. So, for example,
size 30 corresponds in fact to 30× 30× 30× 2 values.

The results obtained show that the asynchronous version is sensibly faster
than the synchronous one for smaller problem sizes, then it becomes similar
or even a bit slower for larger problem sizes. A closer comparison of computa-
tion and communication times in each execution confirms that this behavior
is consistent. The asynchronous version is interesting if communication time
is similar or larger than computation time. In our example, this is the case
up to a problem size between 50 and 60. Then, computations become longer
than communications. Since asynchronous computations often require more
iterations to converge, the gain obtained on the communication side becomes
smaller than the overhead generated on the computation side, and the asyn-
chronous version takes longer.

Overlap of auxiliary computations

In this experiment, we use only the asynchronous version of the application.
In the context of our test application, we have an iterative PDE solver based on
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FIGURE 7.6: Computation times of the test application in synchronous and
asynchronous modes.

Netwon resolution. Such solvers are written under the form x = T (x), x ∈ Rn
where T (x) = x−F ′(x)−1F (x) and F ′ is the Jacobian of the system. In such
cases, it is necessary to compute the vector ∆x in F ′×∆x = −F to update x
with ∆x. There are two levels of iterations, the inner level to get a stabilized
version of x, and the outer level to compute x at the successive time steps
in the simulation process. In this context, classical algorithms either compute
F ′ only at the first iteration of each time step or at some iterations but not
all because the computation of F ′ is done in the main iterative process and it
has a relatively high computing cost.

However, with the scheme presented above, it is possible to continuously
compute new versions of F ′ in parallel to the main iterative process without
penalizing it. Hence, F ′ is updated as often as possible and taken into account
in the main computations when it is relevant. So, the Newton process should
be accelerated a little bit.

We compare the performance obtained with overlapped Jacobian updat-
ings and non-overlapped ones for several problem sizes, see Figure 7.7.

The overlap is clearly efficient as the computation times with overlapping
Jacobian updatings are much better than without overlap. Moreover, the ratio
between the two versions tend to increase with the problem size, which is as
expected. Also, we have tested the application without auxiliary computations
at all, that is, the Jacobian is computed only once at the beginning of each
time step of the simulation. The results for this last version are quite similar
to the overlapped auxiliary computations, and even better for small problem
sizes. The fact that no sensible gain can be seen on this range of problem
sizes is due to the limited number of Jacobian updates taken into account in
the main computation. This happens when the Jacobian update is as long
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FIGURE 7.7: Computation times with or without overlap of Jacobian updat-
ings in asynchronous mode.

as several iterations of the main process. So, the benefit is reduced in this
particular case.

Those results show two things; first, auxiliary computations do not induce
great overhead in the whole process. Second, for this particular application
the choice of updating the Jacobian matrix as auxiliary computations does
not speed up the iterative process. This does not question the parallel scheme
in itself but merely points out the difficulty to identify relevant auxiliary com-
putations. Indeed, this identification depends on the considered application
and requires a profound specialized analysis.

Another interesting choice could be the computation of load estimation for
dynamic load balancing, especially in decentralized diffusion strategies where
loads are transferred between neighboring nodes [8]. In such case, the load
evaluation and the comparison with other nodes can be done in parallel of the
main computations without perturbing them.
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7.4 Perspective: A unifying programming model

In the previous sections we have seen that controlling a distributed GPU
application when using tools that are commonly available is a quite challenging
task. To summarize, such an application has components that can be roughly
classified as:

CPU: CPU bound computations, realized as procedures in the chosen pro-
gramming language

CUDAkern: GPU bound computations, in our context realized as CUDA
compute kernels

CUDAtrans: data transfer between CPU and GPU, realized with CUDA
function calls

MPI: distributed data transfer routines, realized with MPI communication
primitives

OpenMP: inter-thread control, realized with OpenMP synchronization tools
such as mutexes

CUDAsync synchronization of the GPU, realized with CUDA functions

Among these, the last (CUDAsync) is not strictly necessary on modern sys-
tems, but still recommended to obtain optimal performance. With or without
that last step, such an application is highly complex: it is difficult to design
or to maintain, and depends on a lot of different software components. The
goal of this section is to present a new path of development that allows to
replace the last three or four types of components that control the applica-
tion (MPI, OpenMP, CUDAsync and eventually CUDAtrans) by a single tool:
Ordered Read-Write Locks, ORWL, see [10, 13]. Besides the simplification
of the algorithmic scheme that we already have mentioned, the ongoing im-
plementation of ORWL allows to use a feature of modern platforms that can
improve the performance of CPU bound computations: lock-free atomic op-
erations to update shared data consistently. For these, ORWL relies on new
interfaces that are available with the latest revision of the ISO standard for
the C programming language, see [16].

7.4.1 Resources

ORWL places all its concepts that concern data and control around a sin-
gle abstraction: resources. An ORWL resource may correspond to a local or
remote entity and is identified through a location, that is a unique identifi-
cation through which it can be accessed from all different components of the
same application. In fact, resources and locations (entities and their names
so to speak) are mostly identified by ORWL and these words will be used
interchangeably.
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Resources may be of very different kind:

Data resources are entities that represents data and not specific memory
buffers or locations. During the execution of an application it can be
mapped repeatedly into the address space and in effect be represented
at different addresses. Data resources can be made accessible uniformly
in all parts of the application, provided that the locking protocol is
observed, see below. Data resources can have different persistence:

RAM data resources are typically temporary data that serve only dur-
ing a single run of the application. They must be initialized at the
beginning of their lifetime and the contents is lost at the end.

File data resources are persistent and linked to a file in the file system
of the platform.

Collective data resources are data to which all tasks of an application
contribute (see below). Examples for such resources are broadcast,
gather or reduce resources, e.g to distribute initial data or to collect
the result of a distributed computation.

Other types of data resources could be easily implemented with ORWL,
e.g web resources (through a ftp, http or whatever server address) or
fixed hardware addresses.

Device resources represent hardware entities of the platform. ORWL can
then be used to regulate the access to such device resources. In our
context the most important such resource is the GPU, but we could
easily use it to represent a CPU core, a camera or other peripheral
device.

Listing 7.17 shows an example of a declaration of four resources per task.
Two (curBlock and nextBlock) are intended to represent the data in a
block-cyclic parallel matrix multiplication (see p. 120), GPU represents a GPU
device and result will represent a collective “gather” resource among all the
tasks.

Listing 7.17: Declaration of ORWL resources for a block-cyclic matrix mul-
tiplication

#include "orwl.h"
. . .

ORWL LOCATIONS PER TASK( curBlock , nextBlock , GPU, r e s u l t ) ;
ORWL DATA LOCATION( curBlock ) ;

5 ORWL DATA LOCATION( nexBlock ) ;
ORWL DEVICE LOCATION(GPU) ;
ORWL GATHER LOCATION( r e s u l t ) ;

7.4.2 Control

ORWL regulates access to all its resources, no “random access” to a re-
source is possible. It doesn’t even have a user-visible data type for resources.
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� All access is provided through handles. Similar to pointers or links,
these only refer to a resource and help to manipulate it. Usually several
handles to the same resource exist, even inside the same OS process or
thread, or in the same application task.

� The access is locked with RW semantics, where R stands for concurrent
Read access, and W for exclusive Write access. This feature replaces the
control aspect of MPI communications, OpenMP inter-thread control
and CUDAsync.

� This access is Ordered (or serialized) through a FIFO, one FIFO per
resource. This helps to run the different tasks of an application in a
controlled order and to always have all resources in a known state. This
aspect largely replaces and extends the ordering of tasks that MPI typ-
ically achieves through the passing of messages.

� The access is transparently managed for remote or local resources. Com-
munication, if necessary, is done asynchronously behind the scenes. This
replaces the explicit handling of buffers and messages with MPI.

7.4.3 Example: block-cyclic matrix multiplication (MM)

Let us now have a look how a block-cyclic matrix multiplication algorithm
can be implemented with these concepts (Listing 7.18). Inside the loop it
mainly consists of three different operations, of which the first two can be run
concurrently, and the third must be done after the other two.

Listing 7.18: Block-cyclic matrix multiplication, high level per task view

typedef double MBlock [N ] [N ] ;
MBlock A;
MBlock B[ k ] ;
MBlock C[ k ] ;

5

<do some i n i t i a l i z a t i o n >

for ( s i z e t i = 0 ; i < k ; ++i ) {
MBlock next ;

10 p a r a l l e l−do {
operat ion 1 : <copy the matrix A o f the l e f t ne ighbor in to next>;
ope rat ion 2 : {
<copy the l o c a l matrix A to the GPU >;
<on GPU perform C[ i ] = A * B[ 0 ] + . . . + A * B[ k−1] ; >;

15 }
}
operat ion 3 : {
<wait u n t i l the r i g h t neighbor has read our block A>;
A = next ;

20 }
}

<c o l l e c t the r e s u l t matrix C c o n s i s t i n g o f a l l C blocks>

Listing 7.19 shows the local copy operation 3 as it could be realized with
ORWL. It uses two resource handles nextRead and curWrite and marks
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nested critical sections for these handles. Inside the nested sections it obtains
pointers to the resource data; the resource is mapped into the address space
of the program, and then a standard call to memcpy achieves the operation
itself. The operation is integrated in its own for-loop, such that it could run
independently in an OS thread by its own.

Listing 7.19: An iterative local copy operation

for ( s i z e t i = 0 ; i < k ; ++i ) {
ORWL SECTION( nextRead ) {

MBlock const* sBlock = orwl read map ( nextRead ) ;
ORWL SECTION( curWrite ) {

5 MBlock * tBlock = orwl write map ( curWrite ) ;
memcpy( tBlock , sBlock , s izeof * tBlock ) ;

}
}

}

Next, in Listing 7.20 we copy data from a remote task to a local task. Sub-
stantially the operation is the same, only that in the example different handles
(remRead and nextWrite) are used to represent the respective resources.

Listing 7.20: An iterative remote copy operation as part of a block cyclic
matrix multiplication task

for ( s i z e t i = 0 ; i < k ; ++i ) {
ORWL SECTION( remRead ) {

MBlock const* sBlock = orwl read map ( remRead ) ;
ORWL SECTION( nextWrite ) {

5 MBlock * tBlock = orwl write map ( nextWrite ) ;
memcpy( tBlock , sBlock , s izeof * tBlock ) ;

}
}

}

Now let us have a look into the operation that probably interests us the
most, the interaction with the GPU in Listing 7.21. Again there is much struc-
tural resemblance to the copy operations from above, only that we transfer the
data to the GPU in the innermost block and then run the GPU MM kernel
while we still are inside the critical section for the GPU.

Listing 7.21: An iterative GPU transfer and compute operation as part of a
block cyclic matrix multiplication task

for ( s i z e t i = 0 ; i < k ; ++i ) {
ORWL SECTION(GPUhandle ) {

ORWL SECTION( curRead ) {
MBlock const* sBlock = orwl read map ( curRead ) ;

5 transferToGPU ( sBlock , i ) ;
}
runMMonGPU( i ) ;

}
}

Now that we have seen how the actual procedural access to the resources
is regulated we will show how the association between handles and resources
is specified. E.g in our application of block-cyclic MM the curRead handle
should correspond to current matrix block of the corresponding task, whereas
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remRead should point to the current block of the neighboring task. Both read
operations on these matrix blocks can be effected without creating conflicts, so
we would like to express that fact in our resource specification. From a point
of view of the resource “current block” of a particular task, this means that it
can have two simultaneous readers, the task itself performing the transfer to
the GPU, and the neighboring task transferring the data to its “next block”.

Listing 7.22 first shows the local dynamic declarations of our application; it
declares a block type for the matrix blocks, a result data for the collective
resource, and the six handles that we have seen so far.

Listing 7.22: Dynamic declaration of handles to represent the resources

/* A type for the matrix blocks */
typedef double MBlock [N ] [N ] ;
/* Declaration to handle the col lect ive resource */
ORWL GATHER DECLARE(MBlock , r e s u l t ) ;

5

/* Variables to handle data resources */
orwl handle2 remRead = ORWL HANDLE2 INITIALIZER;
orwl handle2 nextWrite = ORWL HANDLE2 INITIALIZER;
orwl handle2 nextRead = ORWL HANDLE2 INITIALIZER;

10 orwl handle2 curWrite = ORWL HANDLE2 INITIALIZER;
orwl handle2 curRead = ORWL HANDLE2 INITIALIZER;

/* Variable to handle the device resources */
orwl handle2 GPUhandle = ORWL HANDLE2 INITIALIZER;

With these declarations, we didn’t yet tell ORWL much about the re-
sources to which these handles refer, nor the type (read or write) or the priority
(FIFO position) of the access. This is done in code Listing 7.23. The handles
for Listing 7.21 are given first, GPUhandle will be accessed exclusively (there-
fore the write) and, as said, curRead is used shared (so a read). Both are
inserted in the FIFO of there respective resources with highest priority, spec-
ified by the 0s in the third function parameter. The resources to which they
correspond are specified through calls to the macro ORWL LOCATION, indi-
cating the task (orwl mytid is the ID of the current task) and the specific
resource of that task, here GPU and curBlock.

Likewise, a second block of insertions concerns the handles for Listing 7.20:
newWrite reclaims an exclusive access and remRead a shared. remRead cor-
responds to a resource of another task; previous(orwl mytid) is supposed
to return the ID of the previous task in the cycle. Both accesses can be effected
concurrently with the previous operation, so we insert with the same priority
0 as before.

Then, for the specification of the third operation (Listing 7.19) we need to
use a different priority: the copy operation from nextBlock to curBlock
has to be performed after the other operations have terminated.

As a final step, we then tell ORWL that the specification of all accesses is
complete and that it may schedule all these accesses in the respective FIFOs
of the resources.

Listing 7.23: Dynamic initialization of access mode and priorities
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/* One operation with priority 0 (highest ) consists */
/* in copying from current to the GPU and run MM, there . */
o r w l w r i t e i n s e r t (&GPUhandle , ORWL LOCATION( orwl mytid , GPU) , 0) ;
o r w l r e a d i n s e r t (&curRead , ORWL LOCATION( orwl mytid , curBlock ) , 0) ;

5

/* Another operation with priority 0 consists */
/* in copying from remote to next */
o r w l r e a d i n s e r t (&remRead , ORWL LOCATION( prev ious ( orwl mytid ) ,

curBlock ) , 0) ;
o r w l w r i t e i n s e r t (&nextWrite , ORWL LOCATION( orwl mytid , nextBlock ) , 0)

;
10

/* One operation with priority 1 consists */
/* in copying from next to current */
o r w l r e a d i n s e r t (&nextRead , ORWL LOCATION( orwl mytid , nextBlock ) , 1) ;
o r w l w r i t e i n s e r t (&curWrite , ORWL LOCATION( orwl mytid , curBlock ) , 1) ;

15

orw l s chedu l e ( ) ;

7.4.4 Tasks and operations

With that example we have now seen that ORWL distinguishes tasks and
operations. An ORWL program is divided into tasks that can be seen as the
algorithmic units that will concurrently access the resources that the program
uses. A task for ORWL is characterized by

� a fixed set of resources that it manages, “owns”, in our example the four
resources that are declared in Listing 7.17.

� a larger set of resources that it accesses, in our example all resources
that are used in Listing 7.23.

� a set of operations that act on these resources, in our example the three
operations that are used in Listing 7.18, and that are elaborated in
Listings 7.19, 7.20 and 7.21.

Each ORWL operation is characterized by

� one resource, usually one that is owned by the enclosing task, that it
accesses exclusively. In our example, operation 1 has exclusive access to
the next block, operation 2 has exclusive access the GPU resource, and
operation 3 to the A block.

� several resources that are accessed concurrently with others.

In fact each ORWL operation can be viewed as a compute-and-update proce-
dure of a particular resource with knowledge of another set of resources.
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7.5 Conclusion

In this chapter, different methodologies that effectively take advantage
of current cluster technologies with GPUs have been presented. Beyond the
simple collaboration of several nodes that include GPUs, we have addressed
parallel schemes to efficiently overlap communications with computations (in-
cluding GPU transfers), and also computations on the CPU with computa-
tions on the GPU. Moreover, parallel schemes for synchronous as well as asyn-
chronous iterative processes have been proposed. The proposed schemes have
been validated experimentally and provide the expected behavior. Finally, as
a prospect we have developed a programming tool that will, in middle or long
term, provide all the required technical elements to implement the proposed
schemes in a single tool, without requiring several external libraries.

We conclude that GPU computations are very well suited to achieve over-
lap with CPU computations and communications and they can be fully inte-
grated in algorithmic schemes combining several levels of parallelism.

7.6 Glossary

AIAC: Asynchronous Iterations - Asynchronous Communications.

Asynchronous iterations: Iterative process where each element is updated
without waiting for the last updates of the other elements.

Auxiliary computations: Optional computations performed in parallel to
the main computations and used to complete them or speed them up.

BSP parallel scheme: Bulk Synchronous Parallel, a parallel model that
uses a repeated pattern (superstep) composed of: computation, commu-
nication, barrier.

GPU stream: Serialized data transfers and computations performed on a
same piece of data.

Message loss/miss: Can be said about a message that is either not sent or
sent but not received (possible with unreliable communication protocols).

Message stamping: Inclusion of a specific value in messages of the same
tag to distinguish them (kind of secondary tag).

ORWL: Ordered Read Write Locks, a programming tool proposing a unified
programming model.
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Page-locked data: Data that are locked in cache memory to ensure fast
accesses.

Residual: Difference between results of consecutive iterations in an iterative
process.

Streamed GPU sequence: GPU transfers and computations performed si-
multaneously via distinct GPU streams.
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