
Algorithmic scheme for hybrid computing
with CPU, Xeon-Phi/MIC and GPU

devices on a single machine

Sylvain CONTASSOT-VIVIER a and Stephane VIALLE b

a Loria - UMR 7503, Université de Lorraine, Nancy, France
b UMI 2958, Georgia Tech - CNRS, CentraleSupelec, University Paris-Saclay, 57070

METZ, France

Abstract. In this paper, we address the problem of the efficient parallel exploitation
of different types of computing devices inside a single machine, to solve a scientific
problem. As a first step, we apply our scheme to the Jacobi relaxation. Despite its
simplicity, it is a good example of iterative process for scientific simulation. Then,
we evaluate and analyze the performance of our parallel implementation on two
configurations of hybrid machine.

Keywords. Accelerator, Xeon-Phi/MIC, GPU, hybrid computing, heterogeneous
computing, offload computing.

Introduction

According to the hardware evolution in the last decades, the architecture of parallel sys-
tems becomes more and more complex. In particular, the development of many-core de-
vices such as GPU (Graphical Processing Unit) and MIC (Many Integrated Cores) have
induced an additional hierarchical level of parallelism in supercomputers. Indeed, current
parallel systems are typically organized as big clusters of nodes and the many-core de-
vices provide much larger computational power at the node level. However, the efficient
programming of all that gathered power is still a major difficulty in the domain of High
Performance Computing, partly due to the hierarchy in the system and to the communi-
cations between the different levels. The main issue is to design and implement efficient
parallel schemes, as general as possible, that allows an efficient cooperation between all
the computing units in a parallel system. The study presented in this paper is, to the best
of our knowledge, one of the first attempt to solve a scientific application by using three
different types of computing units inside a single node: the CPU cores, a GPU and a
MIC.

After a brief review of the previous works over the programming of hybrid machines
(containing different kinds of computing devices) in Section 1, our application and hard-
ware testsbeds are described in Section 2. Then, Section 3 details the different algorithms
designed and implemented for each kind of device (CPU, GPU, MIC). Finally, a multiple
devices solution is proposed in Section 4. An experimental performance comparison and
analysis, proposed in Section 5, allows us to evaluate the efficiency of our scheme and to
point out the major difficulties in such cooperation.



1. Related works

In the past, we have investigated some ways to efficiently design algorithms and codes
for hybrid nodes (one PC with a GPU) and clusters of hybrid nodes (cluster of multi-
core nodes with GPUs) [1,2]. Overlapping of computations with communications was
a key point to achieve high performance on hybrid architectures. The processing speed
of each node increases when using accelerators, while interconnection networks remains
unchanged, and data transfer times between CPU main memory and accelerator memory
introduce new overheads.

Today, scientific computing on GPU accelerators is common, but using Xeon Phi ac-
celerators has still to be explored, although some comparison works have been achieved.
In [3], authors point out the need to optimize data storage and data accesses in different
ways on GPU and Xeon Phi, but no dot attempt to use both accelerators in the same
program. Another strategy is to use a generic programming model and tool to program
heterogeneous architectures, like OpenCL [4]. But usually it does not hide the different
architectures requirements to achieve optimal performance, and it still requires an (im-
portant) algorithmic effort to design high performance codes running concurrently on
different accelerators.

2. Benchmark application and testbeds

2.1. Jacobi relaxation application

According to the scope of this paper (hybrid computing with CPU, GPU and MIC),
we have chosen an application with a regular domain, that is quite representative of
the scientific problems adapted to the constraints of the studied devices (especially the
GPU). Indeed, the objective of this work is not to propose parallel schemes for general
numerical methods but to study the best ways to make the different internal devices of a
hybrid computer work together.

The Jacobi relaxation is a classical iterative process providing a simple modeling of
heat transfer or electrical potential diffusion in 2D or 3D discrete domain (regular grid).
The objective of this application is to compute the stable state over the entire domain for
some given fixed boundary conditions. An explicit iterative 2D scheme is performed as:

crt[l][c] =
pre[l − 1][c] + pre[l][c− 1] + pre[l][c] + pre[l][c + 1] + pre[l + 1][c]

5
(1)

where crt[l][c] is the value of the grid point at line l and column c at the current iteration,
while pre[l][c] gives the value of the same grid point at the previous iteration. The other
four grid points involved are the direct neighbors (in 4-connexity) of the current point.

This iterative process is performed until the termination condition is reached. As the
quantities in the grid are generally coded by real numbers, the strict stabilization may
not be reachable in reasonable time. Among the different solutions to get around this
problem, we have chosen to fix the number of iterations. This presents the advantage of
providing a complete and accurate control over the amount of computation. In fact, this
parameter is essential to study some aspects of parallel algorithms, such as the scalability.

2.2. Testbeds

The machine used at CentraleSupelec (CS) is a Dell R720 server with two 6-cores In-
tel(R) Xeon(R) CPU E5-2620 at 2.10GHz, and two accelerators on separate PCIe buses.



One accelerator is an Intel MIC Xeon-Phi 3120 with 57 physical cores at 1.10 GHz, sup-
porting 4 threads each. The other one is a Nvidia GPU GeForce GTX Titan Black (Kepler
architecture) with 2880 CUDA cores. The machine used at Loria is a Dell R720 server
with two 8-cores Intel(R) Xeon(R) CPU E5-2640 at 2.00GHz, and two accelerators on
separate PCIe buses. One accelerator is an Intel MIC Xeon-Phi 5100 with 60 physical
cores at 1.05 GHz supporting 4 threads each. The other one is a Nvidia GPU Tesla K40m
(Kepler architecture) with 2880 CUDA cores. The CS machine uses CentOs 7.1.1503
and the Intel compiler v15.0.0 whereas the Loria machine uses CentOs 6.6 and the Intel
compiler v14.0.3.

In this paper, we study the behavior of our parallel scheme on these two different
machines, taking into account the relative computing powers of CPU, GPU and MIC.

3. Optimized kernels for single architecture and device

3.1. Multi-core CPU with OpenMP

A first version of the multi-core CPU kernel to perform the Jacobi relaxation consists in
a classical domain decomposition in horizontal strips through the cores. This is achieved
by inserting the parallelism at the level of the loop over the lines of the domain inside the
main iterative loop. That main loop updates the current version of the grid according to
the previous one. The corresponding parallel scheme is given in Listing 1.

Listing 1: Simple OpenMP scheme for the Jacobi relaxation

1 #pragma omp parallel num_threads(nbT) // Threads creation
2 {
3 ... // Local variables and array initializations
4 for(iter=0; iter<nbIters; ++iter){ // Main iterative loop
5 // Parallel parsing of horizontal strips of the domain
6 #pragma omp for
7 for(lig=1; lig<nLig-1; ++lig){ // Lines in each strip
8 for(col=1; col<nCol-1; ++col){ // Columns in each line
9 ind = lig * nCol + col;

10 crt[ind] = 0.2 * (prec[ind - nCol] + prec[ind-1] + prec[ind]←↩

+ prec[ind+1] + prec[ind+nCol]);
11 }
12 }
13 #pragma omp single
14 { ... // Arrays exchange for next iteration (avoids copy) }
15 }
16 }

Although this simple version works quite well for small and medium sizes of grids,
it is not fully scalable for grids with large lines, due to the L2 cache use that is not opti-
mized. We remind the reader that one L2 cache is present in each core of a CPU. So, a
second version has been implemented explicitly taking into account the cache manage-
ment in each core. Due to the data dependencies in our application and to the cache mech-
anism, the modifications mainly consist in changing the update order of the elements in
each horizontal strip.



Horizontal
strip
associated
to one core

Entire grid

Blocks inside the horizontal strip

the cache use

whose width optimizes

Figure 1.: Blocks in horizontal
strips to optimize the cache use

In the first version, the updates are per-
formed by following the order of the entire
lines of the grid. In the second version, the
horizontal strips are divided in blocks along
their width and their updates are performed
block by block. The height of the blocks in
a given strip is the same as the height of the
strip, but their width may be smaller as it
is directly deduced from the cache size and
the line width (lw), as illustrated in Figure 1.
In fact, the optimal block width (obw) is de-
duced from the cache size. Then, the number
of blocks (nbb) per strip is computed. Finally, the actual block width (abw) is computed
in order to obtain blocks of the same width in the horizontal strip.

nbb =
⌈

lw

obw

⌉
, abw =

lw

nbb
(2)

3.2. Many-core MIC with offloaded OpenMP

In order to use the MIC Xeon-Phi, Intel proposes an extension of the OpenMP library in
its C/C++ compiler. It mainly consists in additional directives that allows the programmer
to control the MIC directly from the CPU. It must be noticed that any classical OpenMP
program can be run directly on a MIC. However, in this context, the MIC acts as an
autonomous multi-core machine but it cannot cooperate (via OpenMP) with the central
CPU cores. So, in the perspective of making the MIC cooperate with other devices (CPU,
GPU,...), it is required to use the MIC as a co-processor of the central CPU (see [5]
for an introduction to offload programming paradigm). One great advantage of the MIC,
compared to other devices such as GPU, is that the same OpenMP code that runs on the
CPU can be executed on the MIC without modification. Hence, Listing 1 can be directly
executed on a MIC. However, the MIC has its own memory and can only process data in
its memory. This implies the need of explicit data transfers between the central memory
of the node and the memory on the MIC board.

The execution and data transfers can be expressed with the same directive, called
offload, as depicted in Listing 2.

Listing 2: Offloading of the Jacobi relaxation on a MIC with synchronous data transfers

1 #pragma offload target(mic:0) inout(tabM:length(nLig*nCol) align(64))
2 { // Computes nbIters iterations of Jacobi over array tabM
3 // with nbTMic cores on the MIC
4 jacobi(tabM, nLig, nCol, nbIters, nbTMic);
5 }

In this example, target gives the identifier of the MIC device to use, and the
inout parameter specifies that the array tabM (whose size must be given in number of
elements) is an input as well as an output of the offload. That means that before the
start of the computation on the MIC, the array is copied from central RAM to the MIC
RAM. And once the computation is over, the array is copied back from the MIC RAM to
the central RAM (at the same location). The scalar variables passed as parameters of the
jacobi function are implicitly copied from the central RAM to the MIC RAM. Finally,



the align parameter is optional and forces the memory allocations for the data on the
MIC to be aligned at boundaries greater or equal to the specified number of bytes. Such
memory alignments improve the performance of data transfers.

It is worth noticing that the offload presented in Listing 2 is blocking. So, the core
CPU that executes this offload will wait for the end of the execution of jacobi on the
MIC and for the completion of the output data transfer from the MIC memory to the
central one, before resuming its execution. When the MIC is used alone, without cooper-
ating with the CPU, this synchronous scheme is pertinent. Nevertheless, it prevents any
computation by the CPU while the MIC is running. We will see in Section 4 how to per-
form asynchronous (non-blocking) offloads, in order to allow the CPU to work during
the MIC execution. Also, we will point out the need to replace blocking data transfers by
asynchronous ones, in order to overlap communication with computation.

3.3. Many-core GPU with CUDA

We designed a single CUDA kernel to process the GPU part of the Jacobi relaxation. It
is called two times per iteration: to quickly and early compute the boundary of the GPU
part of the Jacobi grid, and to compute the (large) rest of this grid part. We optimized our
algorithm and code to make fast coalescent memory accesses, to use the shared memory
of each vectorial multiprocessor of the GPU, and to limit the divergence of the thread
of a same block (when not executing exactly the same instructions). See [6] for efficient
CUDA programming rules.

Each thread of this kernel updates one point of the Jacobi Grid during one cycle,
and threads are grouped in 2-dimensional blocks of a 2-dimensional grid. This kernel has
been optimized using the shared memory of each multiprocessor of the GPU, allowing
each thread to read only one data from the GPU global memory, to share this data with
others threads of its block, and efficiently access the 5 input data it requires to update
its Jacobi grid point. Global memory read and write are achieved in a coalescent way.
Considering a block of size BSY × BSX, all the threads (in the range [0; BSY − 1] ×
[0; BSX − 1]) load data from the global memory into the shared memory, and (BSY −
2)× (BSX − 2) threads in the range [0; BSY − 3]× [0; BSX − 3] achieve computations,
limiting the divergence of the threads inside a block.

Listing 3: Optimized CUDA kernel

1 __global__ void update(double *gpuPrec, double *gpuCrt, int gpuLigs,←↩

int cols)
2 {
3 int idx, lig, col;
4 __shared__ double buf[BLOCKSIZEY][BLOCKSIZEX];

6 // Coordinates of the Jacobi grid to load in shared memory
7 col = blockIdx.x * (BLOCKSIZEX - 2) + threadIdx.x;
8 lig = blockIdx.y * (BLOCKSIZEY - 2) + threadIdx.y;
9 // If valid coordinates: load data and compute

10 if(col < cols + 2 && lig < gpuLigs + 2){
11 idx = lig * (cols + 2) + col;
12 buf[threadIdx.y][threadIdx.x] = gpuPrec[idx];
13 __syncthreads();
14 lig++; col++; // shift coordinates to point out element to compute
15 // if new coordinates are valid: achieve computation



16 if(col <= cols && lig <= gpuLigs && threadIdx.x < BLOCKSIZEX-2 ←↩

&& threadIdx.y < BLOCKSIZEY-2){
17 idx = lig * (cols + 2) + col;
18 gpuCrt[idx] = 0.2 * (buf[threadIdx.y][threadIdx.x+1] +
19 buf[threadIdx.y+1][threadIdx.x] +
20 buf[threadIdx.y+1][threadIdx.x+1] +
21 buf[threadIdx.y+1][threadIdx.x+2] +
22 buf[threadIdx.y+2][threadIdx.x+1]);
23 }
24 }
25 }

Moreover, CPU memory arrays involved in the CPU-GPU data transfers have been
locked in memory, using cudaHostAlloc(...) routine, in order to support asyn-
chronous and faster data transfers. Finally, we used some CUDA streams to efficiently
manage and run concurrent data transfers and kernel computations, so that we obtain a
maximal overlapping.

4. Multiple architectures and devices solution

4.1. General asynchronous scheme and data distribution

crt

prec GPU device

MIC deviceCPU device

Inter-device 

data transfers

GPU part

CPU part

MIC part

fc1

fg1

fc2

fg2

fc3
fc4

fm1
fm2

Figure 2.: Data management
scheme on the three devices (CPU,
MIC and GPU)

In our context, the GPU is used as a scientific
co-processor, and we use the MIC in offload
mode. So, our hybrid CPU+MIC+GPU solu-
tion still uses the CPU to run the main func-
tion, to launch all computation steps on the
GPU, on the MIC and on its own cores, and to
launch the data transfers between the CPU and
the accelerators. The CPU memory hosts the
entire current (crt) and previous (prev) Ja-
cobi grids, but the top part is transferred on the
GPU and the bottom part on the MIC (see Fig-
ure 2). We name CPU boundaries the first and
last lines computed by the CPU, GPU bound-
ary the last line computed by the GPU, and
MIC boundary the first line computed by the
MIC. We name corpus the other lines com-
puted by a computing device. So, each com-
puting device (CPU, MIC and GPU) stores
its parts of the Jacobi grids and the adjacent
boundary(ies) of other device(s). In order to
save memory and optimize the transfers, our
parallel algorithm is designed to allow direct transfers of the frontiers in their right place
in the local arrays on the CPU and GPU. So, no intermediate array is required for the
frontiers between CPU and GPU. A similar scheme would be also possible for the MIC
device. However, due to a particularly slow memory allocation of offloaded data and the
impossibility to transfer data from the CPU to an array that has been locally allocated
on the MIC, the use of an intermediate buffer for the CPU/MIC frontiers has been nec-
essary on the MIC side. Save for this difference, the CPU algorithm uses as symmetric



u

ArrayuallocationuonuCPU

ArrayuallocationuonuMICuFfromutheuCPUE

ArrayuallocationuonuGPUuFfromutheuCPUE

MemoryulockinguofuCPU-GPUufrontiersuarraysu
FpartsuofutheuCPUuarraysEu

u

DatauarrayuinitialisationuonuCPUuFcrtuanduprevuarraysEu

ComputationuofuGPUuboundaryuFoneuline
uuuuofuGPUucrtuarrayEu;
TransferuofuGPUuboundaryuintouCPUuucurentu
uuuugridu;

ComputationuofuGPUucrtuarrayR
uuuexceptedutheuGPUuboundaryulineu;u

ComputationuofuMICuboundaryuFoneuline
uuuuofuMICucrtuarrayEu;
TransferuofuMICuboundaryuintouCPUucurrent
uuuuugridu;u

ComputationuofuMICucrtuarrayR
uuuexceptedutheuMICuboundaryulineu;

Asynchronousulaunch

Asynchronousulaunch

Asynchronousulaunch

Asynchronousulaunch

ComputationuofunorthuandusouthuCPUu
uuuuboundariesuFtwoulinesuofuCPUucrtuarrayEu;

Asynchronousulaunch
Asynchronousulaunch

TransferuofuCPUuboundaryutoutheuMIC
uuuucurrentugridTransferuofuCPUuboundaryutoutheuGPUuu

uuuuucurrentugrid

CPU GPU MIC

ComputationuofuCPUucrtuarrayRuexceptedunorth
uuuuandusouthuboundariesulinesu;

Waituenduofutasks
Waituenduofutasks

PermutationuofucrtuanduprevuarraysuonuMIC

PermutationuofucrtuanduprevuarraysuonuCPU
PermutationuofumicCrtuandumicPrevuarrayu
uuuuupointersuonuCPU
PermutationuofugpuCrtuandugpuPrevuarray
uuuuupointersuonuCPU

Asynchronousulaunch TransferuofucrtuarrayuonuMICutoutheuMICupart
uuuuofutheucrtuarrayuonuCPU

FreeuCPUucrtuanduprevuarrays
FreeuGPUucrtuanduprevuarrays
FreeuMICucrtuanduprevuarrays

END

START

Asynchronousulaunch TransferuofuMICupartsuofuprevuarraysuon
uuuuCPUutoutheuMICuanducrtuarrayuintiuonuMICAsynchronousulaunch TransferuofuGPUupartsuofuprevuarraysuonu

uuuCPUutoutheuGPUuanducrtuarrayuinituonuGPU

S-MIC

S-GPU

Synchronousulaunch

Asynchronousulaunch

Waituenduofutask S-GPU

S-MIC

Waituenduofutask S-GPU

Waituenduofutask

Waituenduofutask S-MIC

TransferuofucrtuarrayuonuGPUutoutheuGPUupartuof
uuuutheucrtuarrayuonuCPU

Figure 3. CPU-MIC-GPU algorithm

as possible data structures and interactions for both accelerators. Figure 3 introduces our
multi-device algorithm, based on the following principles:

• Before to enter a new computation step, a processor has its previous Jacobi grid
entirely updated, including the boundary of the adjacent processor. So it can com-
pute all its part of its current grid.

• A processor sends its newly updated boundary to the adjacent processor while it
receives the updated boundary of this adjacent processor.

• Boundary(ies) computation and transfer of a processor are sequentially linked,
but achieved in parallel of its corpus computation. The objective is to overlap as
much as possible the data transfers with large computations, as well as to avoid
that a processor is underused by processing only its boundary(ies).

• The CPU launch asynchronous computations on accelerators and asynchronous
data transfers from and to the accelerators. So, the two accelerators and the CPU
can compute in parallel, and the different data transfers can exploit the two PCI
express buses in parallel.



Obviously, two synchronization points, S-MIC and S-GPU, are mandatory to ensure
that data transfers and computations are finished respectively on MIC and GPU, before
to switch the arrays (current and previous grids) and to enter the next iteration.

A slight asymmetry appears between the MIC and GPU concerning the arrays
switching management (pointers switching). In fact, pointers on GPU arrays are stored
in the CPU memory and sent to the GPU computing kernel as parameters when launch-
ing the kernel. So, these pointers can be switched directly in the CPU memory by the
CPU process. On the contrary, array pointers on MIC are stored in the MIC memory and
managed by the MIC. So, the CPU needs to launch a short task on the MIC to make it
switch its local array pointers.

Finally, we obtain an efficient and rather generic and symmetric parallel scheme that
make cooperate CPU, MIC and GPU devices to solve the same problem.

4.2. Implementation details

To achieve asynchronous transfers between CPU and GPU, three CUDA streams are used
together with two CUDA registrations of the memory banks concerned by the transfers to
lock them and avoid their swapping. We recall that CUDA streams run concurrently but
in each stream, data transfers and kernels are serialized. One stream is used to compute
and send the FG1 line (cf. Fig.2) to the CPU (FC1), another one is used to receive the
FG2 line from the CPU (FC2), and the last one is used to control the asynchronous
computation of the GPU part. The two registrations concern the two frontier lines (FG1
and FG2). The cudaMemcpyAsync and cudaStreamSynchronize functions are
used to perform the asynchronous transfers and to ensure their completion before to
proceed to the following computations.

Concerning the asynchronous data transfers between CPU and MIC, the signal
clause is used in the offload directive computing and sending (with a out clause) the
FM2 line to the CPU (FC4). It is also used in the offload_transfer directive re-
lated to the reception of FM1 from the CPU (FC3). There is also a signaled offload to
asynchronously perform the computation of the MIC part. Then, the offload_wait
directive is used to ensure the transfer completions before performing the following com-
putations.

5. Experiments

5.1. Individual performances of the devices

Table 1 shows the absolute and relative performances of the three devices (computing
units) on each testbed machine, during 5000 iterations on a grid of 20000×10000 points.
The results are averages of 5 executions. On both machines, the CPU part (cores on
the motherboard) is the less powerful, the MIC device is medium, and the GPU is the
most powerful for this problem. The CPU and MIC units in the Loria machine are faster
than the ones in the CS machine, whereas the CS machine GPU is faster than in the
Loria one. This implies that the two machines have different behaviors when running the
multi-device algorithm. This is detailed in the following part.



20000× 10000 pts, 5000 iterations

Testbed Measure CPU MIC GPU

CentraleSupelec Computation speed 1.19E+009 3.50E+009 9.84E+009
machine Global speed 1.19E+009 3.48E+009 9.78E+009

Standard deviation (%) 0.51 6.18 0.04
Speedup 1.0 2.95 8.31

Loria Computation speed 1.60E+009 4.83E+009 7.93E+009
machine Global speed 1.60E+009 4.69E+009 7.87E+009

Standard deviation (%) 5.14 4.72 0.09
Speedup 1.0 3.02 4.96

Computation speed = number of updated points / second
Global speed includes computations, allocations and transfers

Table 1. Absolute and relative performance of the three devices (averages of 5 executions)

20000× 10000 pts, 5000 iterations

Absolute speeds (in updated points / s)

CS machine Loria machine
C = 13500, M = 15000 C = 12500, M = 14000

C / M cutting lines M - 500 M M + 500 M - 500 M M + 500

C - 500 1.15E+010 1.11E+010 8.79E+009 8.99E+009 1.01E+010 1.02E+010
C 1.12E+010 1.22E+010 1.12E+010 9.76E+009 1.06E+010 1.03E+010

C + 500 1.12E+010 1.12E+010 1.13E+010 9.64E+009 1.00E+010 9.98E+009

Speedups from GPU alone

C - 500 1.17 1.13 0.89 1.13 1.27 1.28
C 1.14 1.24 1.14 1.23 1.34 1.29

C + 500 1.14 1.14 1.15 1.21 1.26 1.26
Table 2. Performance (speed and speedup) of heterogeneous computing with CPU, MIC and GPU

5.2. Performance of heterogeneous computing on the three devices

Table 2 shows the speeds and speedups of our heterogeneous algorithm for the same
problem parameters (iterations and grid size), but with different cutting lines. As shown
above, the two machines having different devices speeds, their optimal cutting lines are
not the same. So, for each machine, nine measures are performed around the theoretical
optimal cutting lines (based on single-device performances), using variations of ±500
lines.

First of all, we observe that our heterogeneous algorithm obtains gains with both
machines, according to the fastest device alone (the GPU). However, those gains are
different according to the relative powers of the devices. In the CS machine, the GPU is
much more powerful than the two other devices, implying a limited potential gain of the
heterogeneous version. It is worth noticing that the ideal speedup, estimated without any
communication/allocation overhead is 1.43. So, with a speedup of 1.24, our algorithm
obtains 87% of the ideal case. With the Loria machine, the powers of the devices are a bit
closer, implying larger potential gains. However, in this case, although the ideal speedup
is 1.74, the obtained one is 1.34 and the efficiency is only 77%. Moreover, it must be
noticed that the cutting lines reported in Table 2 for this machine are a bit larger than
the ones indicated by theory (11500 and 13500). This shifting may come from a slight
overestimation of the CPU and MIC, itself due to the higher variations of performance on



this machine (see Standard deviation in Table 1). Another possible reason of the smaller
efficiency may come from the older compiler available on that machine.

Finally, those experiments confirm that our algorithmic scheme can achieve signif-
icant gains by performing a quite efficient cooperation of different kinds of computing
devices inside a same machine.

6. Conclusion

A parallel scheme has been described that allows the cooperation of different computing
devices inside a single hybrid machine. The major difficulty in exploiting such devices
together comes from the data transfers between the central memory of the system and
the local memory on each device. To obtain good efficiency, it is required to make exten-
sive use of asynchronism between the devices as well as overlapping computations with
communications by asynchronous data transfers.

Our experiments have validated our multiple-devices parallel scheme: results were
qualitatively identical using one, two or three devices. Two series of asynchronous data
transfers (CPU↔ GPU and CPU↔MIC) have been implemented with different mech-
anisms and the most efficient combination has been presented.

The results show the possibility to achieve significant gains with quite good effi-
ciencies (from 77 to 87%) according to the ideal gains without the management cost
of heterogeneous devices. Our algorithm shows how to achieve them. Moreover, as it
can be used inside nodes of a cluster, it represents an additional step towards a better
exploitation of large parallel systems (clusters with heterogeneous accelerators).

Among many possibilities, interesting extensions of this work consist in adapting
that parallel scheme to more complex scientific applications, extending it to the coupling
of different solvers running on different devices, adapting it to clusters, and considering
large problems that do not fit in the memory of one device alone.

References

[1] S. Vialle and S. Contassot-Vivier. Patterns for parallel programming on GPUs, chapter Optimization
methodology for Parallel Programming of Homogeneous or Hybrid Clusters. Saxe-Coburg Publications,
2014. ISBN: 978-1-874672-57-9.

[2] S. Contassot-Vivier, S. Vialle, and J. Gustedt. Designing Scientific Applications on GPUs, chapter Devel-
opment Methodologies for GPU and Cluster of GPUs. Chapman & Hall/CRC Numerical Analysis and
Scientific Computing series. Chapman & Hall/CRC, 2013. ISBN 978-1-466571-64-8.

[3] J. Fang, A. L. Varbanescu, B. Imbernon, J. M. Cecilia, and H. Perez-Sanchez. Parallel computation of
non-bonded interactions in drug discovery: Nvidia GPUs vs. Intel Xeon Phi. In 2nd International Work-
Conference on Bioinformatics and Biomedical Engineering (IWBBIO 2014), Granada, Spain, 2014.

[4] B. Gaster, L. Howes, D. Kaeli, P. Mistry, and D. Schaa. Heterogeneous Computing with OpenCL. Morgan
Kaufmann, 2nd edition, 2012. ISBN 9780124058941.

[5] J. Jeffers and J. Reinders. Intel Xeon Phi coprocessor high-performance programming. Elsevier Waltham
(Mass.), 2013. ISBN 978-0-12-410414-3.

[6] J. Sanders and E. Kandrot. CUDA by Example: An Introduction to General-Purpose GPU Programming.
Addison-Wesley Professional, 1st edition, 2010. ISBN-10 0131387685, ISBN-13 9780131387683.


