
Impact of asynchronism on GPU accelerated parallel iterative
computations

Sylvain Contassot-Vivier∗1,2, Thomas Jost†2, and Stéphane Vialle‡2,3

1Loria, University Henri Poincaré, Nancy, France
2AlGorille INRIA project team, France

3IMS Group, SUPELEC, France

Abstract We study the impact of asynchronism on parallel it-
erative algorithms in the particular context of local clusters of
workstations including GPUs. The application test is a classical
PDE problem of advection-diffusion-reaction in 3D. We propose
an asynchronous version of a previously developed PDE solver
using GPUs for the inner computations. The algorithm is tested
with two kinds of clusters, a homogeneous one and a heteroge-
neous one.

Keywords Parallelism, GPGPU, Asynchronism, Scientific com-
puting

1 Introduction
Scientific computing generally involves a huge amount of
computations to obtain accurate results on representative
data sets in reasonable time. This is why it is important
to take as much advantage as possible of any new device
which can be used in the parallel systems and bring a sen-
sible gain in performances. In that context, one of our pre-
vious works was focused on the use of clusters of GPUs
for solving PDEs [7]. The underlying scheme is a two-
stage iterative algorithm in which the inner linear compu-
tations are performed on the GPUs [6]. Important gains
were obtained both in performance and energy consump-
tion. In the meantime, we also showed in our works re-
lated to asynchronism in parallel iterative algorithms [5, 1]
that this algorithmic scheme could be very interesting in
some specific combinations of parallel system and algo-
rithm. Moreover, we also identified the context in which
this algorithmic scheme is advantageous compared to the
synchronous one. As asynchronism allows an efficient and
implicit overlapping of communications by computations,
it is especially well suited to contexts where there is a sen-
sible ratio of communication time according to the com-
putation time. This is for example the case in large local
clusters or grids where communications through the sys-
tem are expensive compared to local accesses.

Our motivation for conducting the study presented in
this paper comes from the fact that a local cluster of GPUs

∗Email: Sylvain.Contassotvivier@loria.fr
†Email: Thomas.Jost@loria.fr
‡Email: Stephane.Vialle@supelec.fr

represents a similar context of costly communications ac-
cording to computations. Indeed, the cost of data transfers
between the GPU memory and the CPU memory inside
each machine is added to the classical cost of local com-
munications between the machines. So, we propose in this
work to study the interest of using asynchronism in our
PDE solver in that specific context.

The test application used for our experiments is the clas-
sical advection-diffusion-reaction problem in a 3D envi-
ronment and two chemical species (see [3] for further de-
tails). Two series of experiments have been performed, one
with a heterogeneous cluster with two couples of CPU-
GPU, and another one with a homogeneous cluster.

The following section presents the algorithmic scheme
of our iterative PDE solver together with the implemen-
tation sketch of the asynchronous version. Then, the ex-
periments are presented and the results are discussed in
Section 3.

2 Asynchronous PDE Solver
It is quite obvious that over the last few years, the clas-
sical algorithmic schemes used to exploit parallel systems
have shown their limit. As the most recent systems are
more and more complex and often include multiple lev-
els of parallelism with very heterogeneous communication
links between those levels, one of the major drawbacks of
the previous schemes has become their synchronous na-
ture. Indeed, synchronizations may sensibly degrade per-
formances in large or hierarchical systems, even for local
systems.

For a few years now, asynchronous algorithmic schemes
have emerged, and although they cannot be used for all
problems, they are efficiently usable for a majority of
them. In scientific computing, it can be expressed only
in iterative algorithms. Although those methods are gener-
ally slower than direct ones, they are often the only known
way to solve some problems and they are also less memory
consuming.

The asynchronous feature consists in suppressing any
idle time induced by the waiting for the dependency data
to be exchanged between the computing units of the par-

Sylvain.Contassotvivier@loria.fr
Thomas.Jost@loria.fr
Stephane.Vialle@supelec.fr


allel system. Hence, each unit performs the successive
iterations on its local data with the dependency data ver-
sions it owns at the current time. The main advantage of
this scheme is to allow an efficient and implicit overlap-
ping of communications by computations. On the other
hand, the major drawbacks of asynchronous iterations are:
a more complex behavior which requires a specific conver-
gence study, and a larger number of iterations to reach con-
vergence. However, the convergence conditions in asyn-
chronous iterations are verified for numerous problems
and, in many computing contexts, the time overhead in-
duced by the additional iterations is largely compensated
by the gain in the communications [1, 4]. In fact, as partly
mentioned in the introduction, as soon as the frequency of
communications relatively to computations is high enough
and the communication costs are larger than local accesses,
an asynchronous version may provide better performances
than a synchronous version.

2.1 Multisplitting-Newton algorithm
There are several methods to solve PDE problems,
each of them including different degrees of synchro-
nism/asynchronism. The method used in this study is the
multisplitting-Newton which allows for a rather important
level of asynchronism. In that context, we use a finite
difference method to solve the PDE system. Hence, the
system is linearized, a regular discretization of the spatial
domain is used and the Jacobian matrix of the system is
computed at the beginning. The Euler equations are used
to approximate the derivatives. The algorithmic scheme of
the method is as follows:
• Rewriting of the problem under a fixed point problem

formulation:
x = T (x),x ∈ R where T (x) = x−F ′(x)−1F(x) and
F ′ is the Jacobian

• We get F ′ × ∆X = −F with F ′ a sparse matrix (in
most cases)

• F ′ and F are distributed over the computing units

• Each unit computes a different part of ∆X using the
quasi-Newton algorithm over its sub-domain as can
be seen in Fig. 1

• The local elements of X are directly updated with the
local part of ∆X

• The non-local elements of X come from the other
units using messages exchanges

• F is updated by using the entire vector X

2.2 Inner linear solver
The method described above is a two-stage algorithm in
which a linear solver is needed in the inner stage. In fact,
most of the time of the algorithm is spent in that linear
solver. This is why we chose to use the most powerful
elements of the parallel system on that part. Thus, the lin-
ear computations have been placed on the GPUs. Due to

� =0 0

0
0

�
F

L
o
c

∆
X

FLoc

Figure 1: Local computations associated to the sub-
domain of one unit

their regularity, those treatments are very well suited to the
SIMD architecture of the GPU. Hence, on each comput-
ing unit, the linear computations required to solve the par-
tial system are performed on the local GPU while all the
algorithmic control, non-linear computations and data ex-
changes between the units are done on the CPU.

The linear solver has been implemented both on CPU
and GPU, using the biconjugate gradient algorithm (see [6]
for further details). This linear solver was chosen because
it performs well on non-symmetric matrices (on both con-
vergence time and numerical accuracy), it has a low mem-
ory footprint, and it is relatively easy to implement.

2.2.1 GPU implementation

Several aspects are critical in a GPU: the regularity of the
computations and the memory which is of limited amount
and the way the data are accessed. In order to reduce
the memory consumption of our sparse matrix, we have
used a compact representation, depicted in Fig. 2, similar
to the DIA (diagonal) format in BLAS, but with several
additional advantages. The first one is the regularity of
the structure which allows us to do coalesced memory ac-
cesses most of the time. The second one is that it provides
an efficient access to the transpose of the matrix, which is
required in the biconjugate gradient method.

AD

0 1 3 6 8LA

0 1 3 6 8

Figure 2: Compact and regular sparse matrix represen-
tation

In order to be as efficient as possible, the shared memory
has been used as a cache memory whenever it was possible
in order to avoid the slower accesses to the global memory
of the GPU. The different kernels used in the solver are di-
vided to reuse as much data as possible at each call, hence
minimizing transfers between the global memory and the
registers. To get full details on those kernels, the reader
should refer to [6].



2.3 Asynchronous aspects
Since the size of the simulation domain can be huge, the
domain is distributed among several nodes of a cluster.
Each node solves a part of the resulting linear system and
sends the relevant data to the other units that need them.
In the asynchronous version, this is that part which is per-
formed asynchronously. One synchronization is still re-
quired between each time step of the simulation, as illus-
trated in Fig. 3.

Simulation

Time

Processor 1

Processor 2

Time step Time step

Simulation

Figure 3: Asynchronous iterations inside each time step
of the computation

At the practical level, the main differences with the syn-
chronous version lie in the suppression of some barriers
and in the way the communications between the units are
managed. Concerning the first aspect, all the barriers be-
tween the inner iterations inside each time step of the simu-
lation are suppressed. The only remaining synchronization
is the one between each time step as pointed out above.

The communications management is a bit more complex
than in the synchronous version as it must enable sending
and receiving operations at any time during the algorithm.
Although the use of non-blocking communications seems
appropriate, it is not sufficient, especially concerning re-
ceptions. This is why a multi-threaded programming is
required. The principle is to use separated threads to per-
form the communications, while the computations are con-
tinuously done in the main thread without any interruption,
until convergence detection. In our version, we used non-
blocking sends in the main thread and an additional thread
to manage the receptions. It must be noted that in order to
be as reactive as possible, some communications may be
initiated by the receiving thread (for example to send back
the local state of the unit).

Subsequently to the multi-threading, the use of mutex
is necessary to protect the accesses to data and some vari-
ables in order to avoid concurrency and potentially inco-
herent modifications.

Another difficulty brought by the asynchronism comes
from the detection of the convergence. Some specific
mechanisms must replace the simple global reduction of
local states of the units to ensure the validity of the de-
tection [2]. The most general scheme may be too expen-
sive in some simple contexts such as local clusters. So,
when some information about the system are available (for
example bounded communication delay), it is often more
pertinent to use a simplified mechanism whose efficiency
is better and whose validity is still ensured in that context.
Although both general and simplified schemes have been

developed for this study, the performances presented in
the following section are related to the simplified scheme
which gave the best results.

3 Experimental results
The platform used to conduct our experiments is a set of
two clusters hosted by SUPELEC in Metz. The first one is
composed of 15 machines with Intel Core2 Duo CPUs run-
ning at 2.66GHz, 4GB of RAM and one Nvidia GeForce
8800GT GPU with 512MB per machine. The operating
system is Linux Fedora. The second cluster is composed
of 17 machines with Intel Nehalem CPUs (4 cores + hyper-
threading) running at 2.67GHz, 6GB RAM and one Nvidia
GeForce GTX 285 with 1GB per machine. The OS is the
same as the previous cluster. Concerning the interconnec-
tion network, both clusters use a Gigabit Ethernet network.
Moreover, they are connected to each other and can be
used as a single heterogeneous cluster via the OAR man-
agement system.

In that hardware context, two series of experiments
seemed particularly interesting to us. The first one consists
in running our application for several problem sizes on one
of the homogeneous clusters. We chose the most recent
one, with the Nehalem CPUs and GTX 285 GPUs. The
second series of experiments is similar to the first one ex-
cept that instead of using only one cluster, we used the two
clusters to obtain a heterogeneous system with 32 nodes.

The results are respectively presented in Table 1 and Ta-
ble 3. The problem size indicated in the left column cor-
responds to the number of elements for each dimension of
the spatial domain (3D). Thus, for a size of 50, there are
503 elements, and as we have two chemical species, the
global linear system is a square matrix with 2× 503 lines
and columns. Fortunately, the local nature of dependen-
cies in the advection-diffusion-reaction problem implies
that only 9 diagonals in that matrix are non-zero.

Pb size Sync Async Speed up Gain (%)
50 16.52 14.85 1.11 10.10
100 144.52 106.09 1.36 26.59
150 392.79 347.40 1.13 11.55
200 901.18 866.31 1.04 3.87
250 1732.60 1674.30 1.03 3.36

Table 1: Execution times (in seconds) with the homoge-
neous cluster (17 machines).

The results obtained in that context are interesting but
not as good as could be expected. The decrease of the gain
when the problem size increases is quite natural as the ra-
tio of communications according to the computations de-
creases and the impact of synchronizations becomes less
preponderant over the overall performances. However, the
rather limited maximal gain is a bit deceiving. In fact, it
can be explained, at least partially, by the very high perfor-
mance network used in the cluster, the rather small amount
of data exchanged between the nodes and the homogene-
ity of the nodes and loads. In such a context, it is clear



that the synchronous communications are not so expen-
sive compared to the extra iterations required by the asyn-
chronous version. Also, it can be deduced that although
the GPU ↔ CPU data transfers play a role in the overall
performances, their impact on our PDE solver is less im-
portant than one could have thought at first glance.

Two additional experiments have been done with the
same cluster but with less processors in order to observe
the behavior of our PDE solver when the number of pro-
cessors varies. The results are provided in Table 2.

14 Machines of the newer cluster
Pb size Sync Async Speed up Gain (%)
50 20.95 17.83 1.17 14.89
100 182.85 132.35 1.38 27.62
150 486.69 442.16 1.10 9.15
200 1101.29 1029.61 1.07 6.51

9 Machines of the newer cluster
Pb size Sync Async Speed up Gain (%)
50 39.68 25.81 1.54 34.95
100 249.63 200.25 1.25 19.78
150 714.85 635.78 1.12 11.06
200 1599.01 1617.28 0.99 -1.14

Table 2: Execution times (in seconds) with 14 and 9
homogeneous machines.

Those results confirm the general trend of gain decrease
when the problem size increases. It can also be observed
that for smaller clusters, the limit of gain brought by asyn-
chronism is reached sooner. And finally, there are some
fluctuations in the gains which denote a complex behavior
of this kind of algorithm according to the context of use.
This would require a deeper study to identify the frontier
of gain between synchronism and asynchronism in func-
tion of the number of processors and the problem size.

Concerning the second context of use, the heteroge-
neous cluster, the results presented in Table 3 are very sur-
prising.

Pb size Sync Async Speed up Gain (%)
100 53.21 52.01 1.02 2.25
150 155.13 164.05 0.94 -5.75
200 322.11 395.11 0.81 -22.66

Table 3: Execution times (in seconds) with the hetero-
geneous cluster (15 + 17 machines).

In fact, the heterogeneity of the machines should im-
ply different computation speeds and the synchronizations
should induce a global slow down imposed by the slow-
est machine. Nevertheless, the results tend to show that
the difference in the powers of the machines is not large
enough to induce a sufficiently sensible unbalancing be-
tween them. Moreover, it clearly appears that the overhead
of the asynchronism in terms of iterations is rapidly more
important than the gain in the communications, leading to
a loss in performances.

Also, another point that may explain the degraded per-
formances of the asynchronous version in the heteroge-

neous cluster is that the GPU cards used in the older cluster
do not support double precision real numbers. Thus, the
program is compiled to use only single precision numbers,
which divides the data size by a factor two and then also
the communications volumes, reducing even more the im-
pact of the communications on the overall execution times.

4 Conclusion
Two versions of a PDE solver algorithm have been imple-
mented and tested on two clusters of GPUs. The conclu-
sion that can be drawn concerning the interest of asynchro-
nism in such a context of parallel system for that kind of
application is mitigated. Some gains can be observed but
they are rather limited. Moreover, the asynchronous ver-
sion is not always better than the synchronous one, de-
noting a combination application-system not completely
suited to that kind of algorithm.

However, as far as we know, that study is among the
very firsts of its kind and it shows that this subject requires
further works. For example, an interesting topic would be
to precisely identify the areas in which one of the operating
modes (sync or async) is better suited than the other to a
given context of number of processors and problem size. In
addition, using load-balancing in that context should also
improve performances of both versions.

References
[1] J. Bahi, S. Contassot-Vivier, and R. Couturier. Evaluation of

the asynchronous iterative algorithms in the context of dis-
tant heterogeneous clusters. Parallel Computing, 31(5):439–
461, 2005.

[2] J. Bahi, S. Contassot-Vivier, and R. Couturier. An effi-
cient and robust decentralized algorithm for detecting the
global convergence in asynchronous iterative algorithms. In
8th International Meeting on High Performance Comput-
ing for Computational Science, VECPAR’08, pages 251–264,
Toulouse, June 2008.

[3] J. Bahi, R. Couturier, K. Mazouzi, and M. Salomon. Syn-
chronous and asynchronous solution of a 3D transport model
in a grid computing environment. Applied Mathematical
Modelling, 30(7):616–628, 2006.

[4] J. M. Bahi, S. Contassot-Vivier, and R. Couturier. Asyn-
chronism for iterative algorithms in a global computing en-
vironment. In The 16th Annual International Symposium
on High Performance Computing Systems and Applications
(HPCS’2002), pages 90–97, Moncton, Canada, June 2002.

[5] J. M. Bahi, S. Contassot-Vivier, and R. Couturier. Parallel
Iterative Algorithms: from sequential to grid computing. Nu-
merical Analysis & Scientific Computing Series. Chapman
& Hall/CRC, 2007.

[6] T. Jost, S. Contassot-Vivier, and S. Vialle. An efficient multi-
algorithms sparse linear solver for GPUs. In EuroGPU mini-
symposium of the International Conference on Parallel Com-
puting, ParCo’2009, Lyon, Sept. 2009.

[7] T. Jost, S. Contassot-Vivier, and S. Vialle. On the interest
of clusters of gpus. In Grid’5000 Spring School 2010, Lille,
France, Apr. 2010.


	Introduction
	Asynchronous PDE Solver
	Multisplitting-Newton algorithm
	Inner linear solver
	GPU implementation

	Asynchronous aspects

	Experimental results
	Conclusion

