- ©Saxe-Coburg Publications, 2013.
"/ F. Magoules, (Editor),

fj"k: Patterns for Parallel Programming on GPUs
Bekae)

Saxe-Coburg Publications, Stirlingshire, Scotland, 149-

A\

B

Chapter 5

Optimization methodology for
Parallel Programming of
Homogeneous or Hybrid Clusters

S. Vialle!3 and S. Contassot-Viviet*

ISupelec & UMI GT-CNRS 2958, Metz, France
2Universié Lorraine, Loria, UMR 7503, Nancy, France
3AlGorille INRIA Project Team, Nancy, France

Abstract

This chapter proposes a study of the optimization procegsm@llel applications to
be run on modern architectures (multi-core CPU nodes withl§§P Different opti-
mization schemes are proposed for overlapping compugatieiih communications,
and for computation kernels.

Development methodologies are introduced to obtain d@iffeoptimization degrees
and specific criteria are defined to help developers find thst sgitable degree of
optimization according to the considered application aaclel system. According
to our experience in industrial collaborations, we analyath performance and code
complexity increase. This last point is an important isaspecially in the industry,
as it directly impacts development and maintenance costs.

Complete experiments are performed to evaluate the diffes@riants of a bench-
mark application that consists of a dense matrix producthése experiments, dif-
ferent runtime parameters and cluster configurations atede Then, the results are
analyzed to evaluate the interest of the different optitradegrees as well as to
validate the interest of the proposed optimization methagio

Keywords: message passing, multithreading on multicore, vectaozain GPU,
communication-computation overlapping, computing keopémization, deployment.

111

112 Patterns for Parallel Programming on GPUs

5.1 Motivations and Objectives

During recent decades, parallel computing has known a gesatiopment. Great im-
provements have been made on the software side (efficiemdasth parallel libraries
for communications [1] or thread management [2]) and on #reWware side (increase
in the number of cores, development of new devices like GPUSs)

However, with the emergence of new types of parallel archute, whose complex-
ity has increased with the levels of explicit hierarchias] ¢he never-ending demand
for efficiency by users (for intensive computations like giogl simulations and so
on), computer scientists are still faced with the challeofyeptimally exploiting the
power of the latest systems.

According to our past experiences in parallel design anéldewments, and the nu-
merous traps we have observed, we propose in this chaptelaatidi study of the
design and implementation of a common scientific applicat@ur case-study deals
with the very classical matrix product. Our objective is &tall the main choices a
developer would have to face for the design, implementatiahoptimal use of such
an application on a modern cluster.

5.1.1 Programming Modern Distributed and Parallel Architectu-
res

Modern parallel architectures are mainly clusters of cax@nd powerful nodes,
typically multicore CPUs sometimes enhanced with hardwacelerators like GPUs
(often denoted as hybrid nodes). Although these architesiare cheap, they can lead
to very high performances. This is why they are extensivelyduin large parallel
systems. However, they include two or three different paliaim grains that require
as much parallel programming paradigms. For example, werncplement parallel
algorithms using:

* MPI alone, deploying (approximately) one MPI process peUCore,

* MPI with OpenMP, deploying at least one MPI process per rext several
OpenMP threads per MPI process,

* MPI with CUDA, to program a cluster of GPUs, deploying atdeane MPI
process per node, and running some grids of CUDA threads ds@&Bm the
MPI processes,

* MPI with OpenMP and CUDA, to program a cluster of nodes idaig both
multicore CPUs and GPUs, deploying at least one MPI procesaqie, some
CPU threads per MPI process, and running grids of GPU thrigadsone or
several CPU threads.

The last configuration is the most complex one but it allowslie implementation
of codes that can run on both CPU and GPU cores of each nodeovar it enables

Parallel Programming of Homogeneous or Hybrid Clusters 113

the overlapping of CPU computations, GPU computations, [GPW data transfers
and inter-node communications. However, the cost of sustargdges is a higher
complexity to develop, debug and optimize a code includihihase features. Finally,
when running on some benchmark data sets, it can be verydaadidate and certify
this type of codes. In the same way, the higher design, dpredat and maintenance
cost of such codes sometimes may be prohibitive in compatsthe gains obtained
relative to a more simple (and thus cheaper) parallel softwa

We propose in this chapter a methodology, composed of basiganeric devel-
opment rules and implementation examples, to ease develudpoh efficient multi-
paradigm and multi-grain parallel codes on multicore CPW mwanycore GPU clus-
ters.

5.1.2 Benchmark Application

In order to ease the didactic description of our approachhawe chosen the very
classical application of dense matrices product.

We denoteA and B as two real square matrices of sizex n and we want to
computeC' = A x B on a parallel system containirfg nodes. For this purpose, we
adopt a classical algorithm on a ring topology of the nodeslibiributing vertical
strips of theB andC' matrices (whose widths are/ P columns) over the nodes. In
the same way, thel matrix is decomposed in horizontal strips (whose heights ar
n/P lines) that are initially distributed over the nodes. Then,each node of the
system, the local square sub-matrix@f(of size 5 x %) corresponding to the local
strips of A and B that are owned at that time is computed. Once this is done, the
horizontal strips ofd are cyclically shifted from one node to the following onelie t
ring, using MPI communications. Then, the local computatiof other sub-matrices
of C are done and so on until all the sub-matricesCofire computed. It can be
deduced easily from the size 6f(n x n) and the number of nodes in the systef),(
that P local multiplication and communication steps will be neszey to perform the
whole computation of” and to returnA in its initial state.

For clarity’s sake, the initial distribution of the matrges given in Figure 5.1, and
the first four steps of the algorithmic process are illustlah Figure 5.2.

In addition to that data distribution, the local part of nraB on each node is trans-
posed in order to optimize the memory accesses a little biglving the same line size
to parse betweedA and BT during the product. So, we obtain the basic algorithmic
scheme, involving only CPU computations and synchronoasngonications, given
in Algorithm 1.

In this algorithm, the communications are not explicithsdebed because there are
several ways to implement such an operation, even in a synobs/blocking mode.
For example, with the MPI library, this can be efficiently ested by the function
MPI_Sendrecv _replace

In fact, this point is one of the key issues in the optimizawocess of a parallel
application. One aspect of the scope of this chapter is tk fobthe best option
among the different possibilities either at the design lleveat the implementation

114 Patterns for Parallel Programming on GPUs

Py Py | Py P3| Py
B
A

P P,
P, P
P2 P2 C
P; P,
Py P,

Figure 5.1: Initial distribution of the matrices over fivedes

one. Before exploring the ways the communications can empeed in Section 5.2,
we briefly describe in the next subsection the parallel sydteat has been used to
obtain all the experimental results that are reported withé chapter.

5.1.3 Experimental Context

The parallel system that has been used for the entire sefpefiexents presented in
this chapter is a cluster composed of 16 nodes each inclagtirgtel Nehalem quad
core at 2.67Ghz, 6 Gb RAM and a NVIDIA GeForce GTX480 GPU. Titercon-
nection network is a Gigabit Ethernet with a DELL Power Ob224 switch.

Concerning the software environment, the OS is a Linux Feddbits. The C
compiler is the GNU C version 4.5.1 and the CUDA version is 4.2

5.2 Interestand Difficulties of Computations and Com-
munications Overlapping

The problem of overlapping computations and communicatianparallel applica-
tions has been extensively studied in the last two decade$osexample [3-5,11,16],
and is still an active research topic [6,7,9, 10, 14].

The obvious advantage of such optimization, when it can balig realized, is to
completely hide one of the two actions (computations or comigations) behind the
other one in terms of execution time. A simple example ismiveFigure 5.3 where
each box corresponds to the computation of its label.

Nevertheless, the seizure of such gain often requires itapomodifications in the
parallel algorithm and most often the overlapping is not ptate but only partial.

Parallel Programming of Homogeneous or Hybrid Clusters

115

P0§P1§P2§P3§P4

Already computed
sub—matrix of C

P0§P1§P2§P3§P4

A A
Po P] Po R
P, b Py Py |
P2 P Poo R ¢
RN NN NSO S L T R S I L1
P, LY P; . Ps
Step 1 Step 2
Py Py [P/ Ps P, Py Py P, P3P,
A A
RENU - S Pl ReTRI e
P, Py e
LR I Y B | Po |
RS N £ E S S Po L Poiib
P, Py P P
Step 3 Step 4

Figure 5.2: First four steps of the parallel process for 5asod

In some cases it is not even pertinent to try to overlap becthes gains are much
smaller than the effort of design and implementation. Sefitist step when studying
a potential overlapping of computations and communicatistio check if it is worth
doing it! This is what is discussed in the following paradrap

5.2.1 Decision Criteria to Implement Overlapping

Ideally, when working on the development of a parallel aggilon, one may want to
obtain its maximal optimization in order to obtain the srasilexecution time. How-
ever, in practice this is generally not what is done, savsifaple cases where optimal
designs and implementation are obvious. This is due to tielyatween the required
effort to add a given enhancement and its gain over the gijgit Although this
ratio is often a secondary criteria in academic researchusecfundamental studies
aim at exploring all the potentiality of a given parallel pkem, this becomes a major

116 Patterns for Parallel Programming on GPUs

Algorithm 1: Basic parallel algorithm for matrices product
Initial data: A, BT andC arrays are distributed over the nodes as in Figure 5.1.
BT is the transposed version of the local partbn the current node.

1: for all nodeNodeld € {0,...,P — 1} doin parallel
2: for step=0to P —1do

3 /l Loop over the global steps as in Figure 5.2
4 LineOffset«— % x ((step + Nodeld)%P)

5: fori=0to5 —1do
6
7
8
9

// Computation of a square sub-matrix within the local waatistrip of C
forj=0top —1do

val+ 0
: for k=0ton —1do
10: val < val + A[i][k] x BTI[j][K]
11: end for
12: c[i + LineOffset][j] + val
13: end for
14: end for
15: Synchronous communications for cyclically shifting thepst of A
over the nodes by one position to the right
16: I/l The result of this operation is that:
17: Il - the current local strip ofd is sent to nodéNodeld + 1)%P
18: Il - the new local strip ofd is received from nodéP + Nodeld — 1)%P
19: end for
20: end for all

element in the industrial context. The main difference leewthese two contexts
comes from the fact that the industry is directly linked tomamic constraints. So,
the difficulty to design, implement and maintain an applarabas an important im-
pact over the cost of the application (conception time, nemalb people required and
their competence level).

So, before bringing any improvement to an application,a®l of pertinence must
be measured. Moreover, the common approach (of good sems&sts of bringing
the improvements with the highest gains in first and therovalhg that with the im-
provements of decreasing gains. So, the improvements esxlsn decreasing order
of their respective gains.

Now, let us define the optimization ratio of an applicatiorD&s corresponding to
no optimization (no improvement done) and 100% correspantdi the most efficient
version of the application that can be made (all the possippeovements are done).
According to our experience, we have been able to observatien someone brings
a series of improvements to an application by following ttligicreasing gain order,
the difficulty tends to increase exponentially with the op#ation ratio. Moreover,
since the improvements are performed in decreasing ord#reaf gains, the gain
curve tends to slow down when increasing the optimizatidioraThese facts are
empirically illustrated in Figure 5.4.

Parallel Programming of Homogeneous or Hybrid Clusters 117

P1 P2 P1 P2
A B A B
© D C D
A.C+(B) D+B.g(A)
A.C+(B) D+B.g(A)
t t

Initial parallel scheme parallel scheme with overlapping

Figure 5.3: Simple case of overlapping of computations amdrounications

gain | - Performance gain T |

— Difficulty degree -~ B

Optimization
ratio (%)

100

Figure 5.4: Difficulty degree and performance gain evolutiofunction of the opti-
mization ratio

So, a decision criterion for bringing improvements to anli@ggon can be deduced
by finding a specific threshold inside the optimization ratierval where a satisfying
trade-off between the difficulty degree and the overall gaimchieved. Another way
to get a decision criterion is to consider each improvemepasately and to compare
its ratio between its estimated difficulty degree and itsepbél gain with a given
threshold.

However, those criteria require achievement of a good idi#fzeddifficulty and gain
curves. Although it is quite subjective to evaluate the clifiy curve, the gain curve
can be obtained quite easily by monitoring the time consionpf every part of the
application and by ordering them in decreasing order.

In a parallel application, we can distinguish two main typésime consumption.
The former is related to the computations and the latteremrscthe communications.
Concerning the computations, the monitoring generallysigia of determining in
which functions of the program the majority of the compwatiime is passed. This
allows the designers/programmers to focus their optinangtarallelization effort on
the most time consuming parts of the application. In the samyg the monitoring of
the communications provides the time passed in each conmation phase and this
information directly influences the use of an overlappirdnteque.

118 Patterns for Parallel Programming on GPUs

Such an improvement will depend initially on external pagsens like the available
time/budget to design and implement such optimization aedrhportance degree of
the application performances. Those criteria have to bsidered before any analysis
of the pertinence of including overlapping in the applioatiThen, parameters related
to the development and exploitation contexts of the appdinavill play a role during
the analysis. We can cite for example the software envirarintiee parallel system
architecture and the number of available nodes for prodncti

Once the external parameters have been considered, tiveeped of the overlap-
ping should be evaluated according to two criteria. The din&t checks that the mea-
sure of the maximumpotential gain of the overlapping iséa@gough. That measure
is obtained by selecting the minimum time consumption betweomputations and
communications and by computing the ratio of this minimunthi® total execution
time of the application. The prior selection of the minimuomes from the fact that
an ideal overlapping will at best completédide (overlap) the shorter time consuming
activity inside the other one. Thus, the time of that hiddetivay will be removed
from the total execution time. So, the potential gain isdigelinked to the ratio be-
tween the computation and communication times. Its maximaiore is reached when
those two activities take approximately the same time. iBhitustrated in Figure 5.5
where we consider, for clarity’s sake, that there is no @oltktl cost in the application
other than the parallel computations and the communicatilorthis theoretical case,
the maximum potential overlapping is 50% when both acésitake the same time as
their overlapping makes the application twice as fast (50&ter). In real applica-
tions, the overall behaviour will be similar to the one dégitin this figure except that
the maximum potential of overlapping will be under 50% dueaastant additional
costs in the application (initialization, post-treatnrgiérminationgetc).

100
90 - .
80 - .
70 - .
60 - .
50 |-
40 -
30 -
20 -
10 -

0 ‘ ‘ R P L ‘ -
0.001 0.01 0.1 1 10 100 1000

Computation time over communication time

Potential overlapping gain (%)

Figure 5.5: Potential overlapping gain according to theda¢tween the computation
time and the communication time in an application with nceottosts

For example, if we consider an application where the contjoutand communica-
tion times are equal and correspond to 40% of the total ei@ceaach. Then, although

Parallel Programming of Homogeneous or Hybrid Clusters 119

the potential gain will be maximal, it will be limited to 40% the initial execution
time. Now, let us imagine that the computation time of theli@pgion is 85% of its
total execution time, and the communication time is only 1¥hen, although any
ideal overlapping (if it exists) would completely hide thentmunications, it would
obtain a maximal gain of only 1% of the total execution timehisTis a very small
gain according to the design/implementation effort reggliand the complexity in-
crease of the source code. In such a case, it is very liketythleaoverlapping would
be considered not pertinent.

In fact, that first criterion is fulfilled when the potentiadig becomes large enough
according to a given threshold, corresponding to the tttiemit between optimiza-
tion and design/implementation/maintenance cost. Itides/an interesting filter but
it is quite coarse due to the fact that it is totally theomdtiand is based upon the
hypothesis that an ideal overlapping can be found. Howéweris generally not pos-
sible in practice and it is very common that only a part of theaflel computations
and communications can actually be overlapped, reducmjrial gain.

This is why a more subtle criterion is necessary once thefiitst is passed. Itis
important to keep in mind that this second criterion sho@ahecked only when the
first criterion is verified because it requires a deeper amalyf the application algo-
rithms and potentially a finer monitoring. It consists of lexzing the quality of the
best overlapping scheme found by analyzing the paralledraehof the application.
This quality is measured by the percentage of the shortéisitachat actually can
be overlapped with the other activity. It represents, in s@@nse, the maximal de-
gree of overlapping that can be achieved between compusadiod communications.
The maximal quality (100%) corresponds to the case whereobtige activities is
completely overlapped by the other one.

Finally, the maximal global gain that can be expected (ircgetage of the total
execution time) is deduced by multiplying the first ratiogdsn the first criterion)
with that quality measure. The second criterion is fulfifedsufficiently large values
of this global gain.

For example, let us consider that 48% of the total execuiioa bf an application is
spent for computations and 46% for the communications. Tsiecfiiterion is fulfilled
since the ratio of the shortest activity is 46%. Howevehd best overlapping scheme
that is found can only overlap 10% of the communications \ilidh computations
(quality measure), then the actual maximal gain will be ot896x 10%=4.6%, and
the second criterion would probably not be satisfied.

In conclusion, we can say that the first criterion is used tod#ewhether a de-
sign analysis of the possible overlapping schemes has toriucted or not, and the
second one is used to decide whether it is worth implemerttiorgnot.

If we apply this methodology to our matrices product appiaa we have to moni-
tor the computation time, the communication time and thal texecution time in or-
der to check the first criterion. Such measures are givenbteTal for a 40964096
matrix size and different numbers of nodes.

First of all, it can be observed that the communication tiost jncreases slightly
with the number of nodes. This is due to the fact that only tnalmer of communica-

120 Patterns for Parallel Programming on GPUs

Number of| computation] communication total exec ratio of the
nodes P) time (s) time (s) time (s) | shortest activity (%
2 40.852 1.417 44.186 3.21
4 20.460 1.612 23.828 6.77
8 10.240 1.622 13.606 11.92
16 4.943 1.720 8.412 20.44

Table 5.1: Computation, communication and total times ehsic parallel matrices
product forn = 4096, and potential gain of the overlapping

tions increases with the number of nodes but the global velatays constant. This
is not the same for the computation time as the parallelisquiie efficient and there
is almost a linear decrease with the number of nodes. Theex¢aution time shows
a slower decrease than the computation time due to the ioole$ the communica-
tions, but also to the sequential parts of the program &éltition, finalizationgtc)
that have generally near constant costs according to theegmnosize.

The very different benaviours of the computation and comigation times imply
that the ratio of the shortest activity (the communicationthis case) increases with
the number of nodes and reaches very significant percentddbe total execution
time. According to these results, the pertinence of thelapping is quite obvious for
sufficiently large numbers of nodes. Effectively, an ideartapping should provide
a gain of around 12% with 8 nodes and 20% with 16 nodes. Neslegh, although
this is not observable in these experiments, it must be kapind that there is always
a threshold over the number of nodes beyond which the coriputime becomes
smaller than the communication time and, as explained iditstecriterion descrip-
tion, the potential overlapping gain decreases.

At this point, the decision of implementing the overlappstdl depends on the
second criteria. A short analysis of the matrices producalfe algorithm (see Al-
gorithm 1 and Figure 5.2) reveals that the communicatiom®pred at each step
concern only some input data (a strip 4j. So there is no strong constraint over
the start time of those communications and they can be domegdihe computations
of the C' sub-matrices without involving any perturbation betwees tivo activities.
The only interaction between them may be concurrent reaelsaes on thel strip,
but these types of accesses are quite efficiently managdtelputrent hardware and
they would imply a negligible loss of time. Moreover, wittetglobal communication
time being smaller than the global computation time in Tdble(a finer monitoring
would confirm that it is also true when comparing them withawcke iteration of the
global loop), it seems possible in this case to obtain an siirm@mplete overlapping
of the communications with the computations. Thus, thelapping quality is close
to 100% and the maximal actual gains are very close to thedtlieal gains obtained
in Table 5.1 (right column). So this parallel applicationvery well suited to the
overlapping.

In the following paragraphs, we explore different overliaygpstrategies for our
benchmark application. The MPI communication library igdisn our implemen-

Parallel Programming of Homogeneous or Hybrid Clusters 121

tations as it is currently the standard environment for Ipgrdevelopments.

5.2.2 Attempting to Use Non-Blocking MPI Communications

When trying to implement overlapping in a parallel applicat the first idea that
comes to mind is to use the non-blocking communications dhatavailable in the
MPI library. The key idea in such communication operatiathat they do not block
tillthe communication is actually performed but they retimmediately. It is a bit like
a registering system in which the communications to be doméaerted on demand
and removed as soon as they are performed. However, unkkimtitive idea that
the management of those asynchronous communications \eeuperformed in an
additional thread (and thus in parallel with the main pregethe MPI standard does
not specify any thread use for this and in general, the concations are managed
explicitly at their initial request or whenever their corafbn is tested (including the
waiting functions) [8]. So, in this context, the overlappiaf communications and
computations may not be fully parallel and thus may be ineffitc

According to our benchmark application, the overlappirfiesee we obtain is given
in Algorithm 2. As the communications are potentially penfied during the compu-
tations, two versions of the local matrix are required on each node to avoid con-
current read-write accesses. At each step, one versiordtagerform the current
computations and to send the current versiomdb the next node while the other
one is used for the reception of the next versiomdofrom the previous node. For
convenience in managing the two versionsdpfthey are placed in a global array of
size two, implying an additional dimension (in first positjon the local arrayd. The
“...”in the parameters of the call to the local computations fiamccorresponds to
additional parameters that are not relevant here.

In this version, we use persistent communications instéateosimplelssend
andlrecv functions because this avoids multiple creations/reea$¢he involved
MPI requests that would take place at each iteration of thie foap (over thestep
counter).

As mentioned above, although that overlapping scheme isabpeal, it may not
provide the best performances (see Section 5.2.5) due tfa¢he¢hat non-blocking
communications are not multi-threaded. In the next subse@nother scheme is
proposed making use of separate threads for computati@hsocsmnmunications.

5.2.3 Synchronous MPI Communications inside Dedicated Tlaads

In order to avoid the problem of the asynchronous MPI comeations, a second
possibility to implement the overlapping consists of usggparate threads for the
computations and the communications.

A simple and efficient way to do that is to use the OpenMP direstin conjunction
with MPI. The principle is to place communications in one @P&P thread and
the local computations in another one (possibly severaifoiti-core nodes). In the
case of multiple computing threads, each of them perfornig @mart of the local

122 Patterns for Parallel Programming on GPUs

Algorithm 2: Overlapping scheme with non-blocking MPI communications

Istlisting

/1 Me is the nunber of the current node
/1 NbPE corresponds to P

/1 SIZE corresponds to n

/'l LOCAL_SI ZE corresponds to %
/1 Status and requests for the non-blocking MPI comuni cations
MP|_Status StatusS[2];

MPI_Status StatusR[2];

MPI_Request RequestS[2];

MPI_Request RequestR[2];

/] Creation of persistent comunications if nore than one node
if (NbPE > 1) {

MPI_Ssend_init(&A[0][0][0], LOCAL_SIZE *SIZE, MPI_DOUBLE, (Me+1)%NbPE, 0, <«
MPI_COMM_WORLD, &RequestS[0]);

MPI_Recv_init(&A[1][0][0], LOCAL_SIZE *SIZE, MP|_DOUBLE, (Me-1+NbPE)%NbPE, 0, <
MPI_COMM_WORLD, &RequestR[1]);

MPI_Ssend_init(&A[1][0][0], LOCAL_SIZE *SIZE, MPI_DOUBLE, (Me+1)%NbPE, 0, <«
MPI_COMM_WORLD, &RequestS[1));

MPI_Recv_init(&A[0][0][0], LOCAL_SIZE *SIZE, MP|_DOUBLE, (Me-1+NbPE)%NbPE, 0, <

MPI_COMM_WORLD, &RequestR[0]);
}

/1 Computation and circulation loop (sane as line 2 in the basic schene)
for (int step = 0; step < NbPE; step++) {

/1 1Index of the local version of Ato use for the computations and sendi ng
i nt Currentldx = step%2;

/1 Index of the local version of Ato use for the reception

int Nextldx = 1 - Currentldx;

/1 Communi cati ons

if (NbPE > 1) {
MPI_Start(&RequestR[Nextldx]);
MPI_Start(&RequestS[Currentldx]);

}

/1 Local conputations
KernelLocalProduct(step, Currentldx, ...);

/1 Waiting for conmmunications conpletion before going to next step
if (NbPE > 1) {
MPI_Wait(&RequestR[Nextldx], &StatusR[Nextldx]);
MPI_Wait(&RequestS[Currentldx], &StatusS[Currentldx]);
}
}

/'l Rel ease of persistent conmunications requests
if (NbPE > 1) {
MPI_Request_free(&RequestS[0]);
MPI_Request_free(&RequestR[1]);

MPI_Request_free(&RequestS[1]);
MPI_Request_free(&RequestR[0]);

Parallel Programming of Homogeneous or Hybrid Clusters 123

computations. Similarly to the global distribution of theneputations over the nodes,
the local subdivision over the computing threads is doneainizbntal strips of the
square sub-matrix of' that has to be computed at the current step of the main loop.
This decomposition is illustrated in Figure5.6. In respefcthe communications,
since they are performed in a separate thread, they arecithpéxecuted in parallel
with the computations and there is no need to use asynchsmomomunications. This

is interesting because it reduces the code complexity (nbrbtRiests management).

Figure 5.6: Decomposition of the local computations fortiplé computing threads

In Algorithm 3 is given the most general version where theas tme multiple com-
puting threads. For each computing thread, the start andneinces (nfvalinc
andsupvalexc) of its assigned horizontal sub-strip 6fare computed. The syn-
chronousSendrecv MPI primitive is used in the communication thread.

In the two previous versions, only CPU computations arelieach However, it is
currently possible to use additional devices such as GPyded up the computa-
tions. In the following subsection overlapping strategiethe context of GPU use are
presented.

5.2.4 Overlapping MPI Communications and GPU Computations

The computations performed in our benchmark applicatiervary well suited to the
use of GPU due to their regularity. However, when using a Gdta transfers are
required to and from the GPU to the central memory of the néddethose transfers
may influence the potential of the overlapping (whether miduded in it or not),

we have added this information in our monitoring presentedable 5.2. So there
are two sub-columns for the computation time. The first omeesponds to the GPU

124 Patterns for Parallel Programming on GPUs

Algorithm 3: Overlapping scheme with separate computing and commumrcat
threads

Istlisting
MPI_Status status;

/1 Computation and circul ation | oop
#pragma omp parallel

for (int step = 0; step < NbPE; step++) {
int idx = step % 2;
i nt nbthcalc = omp_get_num_threads()-1;

// Conputation threads
i f (omp_get_thread_num() < nbthcalc) {
/1 Dynamic conputation of the data range of the thread
int g = LOCAL_SIZE / nbthcalc;
int r = LOCAL_SIZE % nbthcalc;
i nt infvalinc = q *omp_get_thread_num() + (omp_get_thread_num() < r ? —
omp_get_thread_num() : r);
i nt supvalexc = infvalinc + g + (omp_get_thread_num() < r ? 1 : 0);
/1 Local conputation
KernelLocalProduct(step, idx, ... , infvalinc, supvalexc);

/1 Input data circulation thread

} else {
if (NbPE > 1) {
MPI_Sendrecv(&A[idx][0][0], LOCAL_SIZE *SIZE, MPI_DOUBLE, (Me+1)%NbPE, step, <
&A[1-idx][0][0], LOCAL_SIZE *SIZE, MPI_DOUBLE, (Me-1+NbPE)%NbPE, step, —

MPI_COMM_WORLD, &status);
}
}

/1 Synchronization barrier: wait all conputation and conm achi eved
#pragma omp barrier

} /1 end of parallel region

Parallel Programming of Homogeneous or Hybrid Clusters 125

computation time without data transfers and the secondrartedes them. As a con-
sequence, there are also two sub-columns for the ratiogbpectively correspond to
both variants of overlapping excluding or including the GéPAda transfers.

Number| GPU computation | communica-| total exec ratio of the
of time (s) tion time (s)| time (s) | shortest activity (%)

nodes | without | including without | including
(P) transfers| transfers transfers| transfers
2 1.771 1.819 1.386 5.084 27.27 35.78
4 0.851 0.889 1.549 4.186 20.33 21.24
8 0.401 0.436 1.578 3.757 10.66 11.59
16 0.168 0.199 1.548 3.502 4.79 5.69

Table 5.2: GPU computation, communication and total timeke basic parallel ma-
trices product for, = 4096, and potential gain from the overlapping

Although the global benaviours of the computation and comigation times are al-
most the same as in the initial version (see Table 5.1), thgoatation times are much
smaller than with CPU computations. In fact, there is a yeannstant speed up
around 25-23 (respectively without and with data tran$feetween the CPU com-
putations and the GPU ones according to the number of nodess. has a double
impact over the ratio of potential overlapping. Firstlyg tiotal execution time is much
smaller than with CPU computations whereas the communpitdimes are almost
the same. So, the proportion of the communications in thed tohe is implicitly
increased. Secondly, the computation time becomes mudiesiiean the communi-
cation time when the number of nodes increases. This tendsda@ase the ratio of
potential overlapping, as can be seen in the ratio columialoe 5.2.

From those results, we can conclude that the use of GPU isint@gesting for
absolute performances but it decreases the interest ofappéng when the number
of nodes increases. In the case of our benchmark applicaterfirst overlapping
criterion may not be verified for 16 nodes and more. In practibe decision to
make a deeper analysis of the overlapping interest wouldri&at this point, on the
number of nodes planned to be used when exploiting the atiglic In the scope of
our study, we consider a possible use of the applicationyrcanfiguration of nodes.
So, the analysis of the second criterion (maximal qualityhef overlapping) is still
pertinent due to the rather significant ratios obtained fiealsnumbers of nodes.

In respect of the overlapping quality, an essential adypntd the GPU kernel call-
ing mechanism in the context of overlapping lies in its naflyrasynchronous nature.
In fact, once the data have been transferred to the devienalkcall from the CPU
is non-blocking and allows it to perform other tasks durihg kernel execution on
the GPU without recourse to any additional thread. Obvigukls benaviour is pos-
sible because the CPU and the GPU are distinct and indepedeldnes in terms of
code execution (like any other co-processor like networkoomd devices). Synchro-
nization points can be explicitly inserted in the code if eezary. In respect of the
inclusion of GPU transfers in the overlapping, the impletagan is more complex

126 Patterns for Parallel Programming on GPUs

and requires multiple threads (see Section5.2.4.2), lmantalso be achieved quite
efficiently.

Finally, it appears that the actual quality of an overlagpii GPU computations
with communications should be high, and the second critegwerified.

In the following two subsections, we propose different igars of overlapping GPU
computations with inter-node communications. As the palralystem used for the
experiments contains NVIDIA GPUs, the CUDA API is used in pineposed source
codes.

5.2.4.1 Natural Overlapping of GPU Computations with Blockng MPI Com-
munications

The first overlapping scheme is quite simple as it only cameé¢ine GPU computa-
tions. It mainly consists of executing at each step of thealprocess, the data trans-
fer of the currentA strip to the GPU, the call of the GPU kernel and the inter-sode
communications ofd strips. The asynchronous (non-blocking) nature of the GPU
kernel calls makes an implicit overlapping of the kernelee®®sn and the inter-node
communications.

The corresponding overlapping scheme is given in Algorithmlt can be seen
that there is no explicit synchronization of the GPU in thigle. In fact, this is not
required in that case because a single stream is used bytdefahe GPU and within
one stream, only one kernel or data transfer can be execttedirmae. Moreover,
GPU data transfers are implicitly synchronous. Asynchusnimansfers are possible
but they imply strong constraints on the involved memoryKsatihat significantly
increase the code complexity. So this solution is not pentitn our context.

Finally, it appears that in our algorithm each GPU data teangsr kernel call will
be blocked while the previous one is not finished. Hence, énael call in the loop
will be executed only once the transfer4fis completed, and the transfer éfin the
next iteration will only begin once the kernel call in the yimaus iteration is finished.
This benaviour ensures a valid execution of the main loop@piarallel process while
preserving a simple source code.

Although this version should provide very good performandkere are still some
possible improvements according to the data transfersad@RU. As mentioned
above, the GPU invocations being exclusive within a singleasn, we have seen
that the computation kernel and the transferdodre sequentially scheduled. This is
exactly the same for the initial data transfer before thennt@p and the transfer of
A in the first iteration. Moreover, the use of a synchronous difthitive and syn-
chronous GPU transfers prevent the overlapping of the-mtele communications
with the transfer ofd at the next iteration or with the final data transfer afterltog.
So, data transfers to and from the GPU are not included inotreslapping scheme.
As a last step towards the complete optimization of the aypgihg, a final version
including data transfers is proposed in the following schsa.

Parallel Programming of Homogeneous or Hybrid Clusters 127

Algorithm 4: Overlapping scheme with implicit asynchronous GPU keraél ¢

Istlisting
MPI_Status status;

/'l Transfer of the local strip of B and the node id to the GPU
gpuSetDataOnGPU();
/1 Conputation and circul ation | oop
for (int step = 0; step < NbPE; step++) {
int idx = step%?2;
/1 Transfer of the current local strip of Afromthe CPUto the GPU
gpuSetAOnGPU(idx);
// Conputation
gpuKernelLocalProduct(step, GPUKernelld); /1 Async call of the GPU kernel
/1 lnput data circulation
if (NbPE > 1) {

MPI_Sendrecv(&A[idx][0][0], LOCAL_SIZE *SIZE, MPI_DOUBLE, (Me+1)%NbPE, step, &A <+
[1-idx][0][0], LOCAL_SIZE *SIZE, MPI_DOUBLE, (Me-1+NbPE)%NbPE, step, <«
MPI_COMM_WORLD, &status);

}

}
/1 Get back results fromthe GPU to the CPU
gpuGetResultOnCPU();

5.2.4.2 Inserting the CPU/GPU Data Transfers in the Overlaping Mechanism

As can be seen in Table 5.2, the inclusion of the GPU dataftemis the overlapping
increases its interest a little bit. Although it is not a midgctor in the decision, it
may push back the interest threshold over the number of n&tesve propose a final
overlapping scheme including those transfers.

For this final optimization, the use of multiple streams oa @PU does not help
due to the sequential dependency between the data transférsnd the kernel calls.
Moreover, as mentioned in the previous subsection, asgnolis GPU transfers in-
duce a more complex memory management due to specific cimstrasynchronous
MPI primitives could also be used but, as mentioned preWptigey are less efficient
than separate threads due to the blocking synchronousreatddrs ofd to the GPU.
In fact, the progress of the MPI communication would not Heative during the
transfer ofA, thus preventing an actual overlap of those two activitMsreover, the
initial and final transfers respectively to and from the GBEf¢re and after the main
loop) could not be overlapped in such a scheme.

A more convenient and efficient solution is to use separatatis to perform on
one hand, the GPU transfers and computations, and on thehahd, the inter-node
communications. Such a scheme, using the OpenMP direcis/presented in Algo-
rithm 5. It is quite similar to Algorithm 3 involving the usé @penMP. However, the
number of OpenMP threads is explicitly set to two in thiséastversion: one for the
GPU management and one for the communications.

There are specific GPU management rules when running nedhiptads. Although
a GPU device can be used by several threads at a time, eacld tba@ use only
one GPU device at a time. It is worth mentioning that it is veejicate to use one
GPU device from several threads simultaneously and thisldhme done only when

128 Patterns for Parallel Programming on GPUs

Algorithm 5: Overlapping scheme with multiple threads

Istlisting

MPI_Status status; /1 MPl asynchronous communi cati on status

/1 Explicit creation of two threads (nore is usel ess)
omp_set_num_threads(2);

/1 Computation and circulation | oop: creation of the threads
#pragma omp parallel

{
int thild = omp_get_thread_num();

for (int step = 0; step < NbPE; step++) {
int idx = step % 2;

switch (thid) {

/1 Conputation thread

case 0 :
/1 Initialize GPU usage at step O
if (step == 0) {

cudaSetDevice(0); /1 Indicates that thread 0 uses the GPU 0 (optional)
gpuSetDataOnGPU(); /! Data transfer to the GPU

}

/1 Transfer of the current |ocal version of Ato the GPU

gpuSetAOnGPU(idx);

/1 Local conputation
gpuKernelLocalProduct(step, GPUKernelld);
/1 Finalize GPU usage fromthread 0 at |ast step
if (step == NbPE-1) {
gpuGetResultONnCPU(); /] Get back the results fromthe CPU
}

br eak;

/1 Communi cation thread

case 1 :
if (NbPE > 1) {
MPI_Sendrecv(&A[idx][0][0], LOCAL_SIZE *SIZE, MPI_DOUBLE, (Me+1)%NbPE, step <«
, &A[1-idx][0][0], LOCAL_SIZE *SIZE, MPI_DOUBLE, (Me-1+NbPE)%NbPE, step <«
, MPI_COMM_WORLD, &status);
}
br eak;
}

/1 Synchronization barrier: wait for termnation of both conputation and «
conmuni cati on
#pragma omp barrier

} /1 end of parallel region: end of the threads

Parallel Programming of Homogeneous or Hybrid Clusters 129

necessary. Mutual exclusion can be imposed between thedhresing a same GPU
by using lower level CUDA contexts. However, such exclusioechanisms are not
useful in our scheme and are outside the scope of this chapter

Conversely, the specification of the GPU device used by daehd managing GPU
computations would be required in the presence of severdl Gices per node. In
fact, the scheme proposed in Algorithm 5 should be extendéuki presence of sev-
eral GPU devices by decomposing the local computationsdicapto the number of
available GPU devices and by assigning one thread per GPidedievmanage their
respective computations and data transfers. So, simiiariye scheme presented in
Algorithm 3, each computing thread would manage a part ofdbally distributed
computations. The main difference is that the threads wdaltheir assigned com-
putations on distinct GPU devices instead of distinct CPteso0 In this case, the
functioncudaSetDevice must be used to indicate which GPU device will execute
all the subsequent CUDA invocations made by the callingatthrel his function can
be called several times by the same thread and allows it tdiffseent GPUs during
its execution. With the latest versions of CUDA (4.2), it mt mecessary to explicitly
assign the GPU device to a thread when there is a single diexgicke the node. By
default, all the threads will use this device.

In our scheme, we have explicitly included this action beeaitiis not implicit in
all versions of CUDA, but also in a pedagogic goal to help teder to keep in mind
that the device choice may be necessary with multiple GPlitdsyv

Finally, this last scheme realizes a potentially completriapping and should ob-
tain slightly better performances than the previous one.loba performance com-
parison of the different versions is presented in Sectidn 5lowever, experimental
results focused on the overlapping are given and analyzéiakinext section.

5.2.5 Experimental Comparison and Analysis of the Overlapmg
Schemes

We presentin Table 5.3, a small synthesis of the experirhessialts obtained with the
four overlapping versions. The times (in seconds) repdrtekiis table correspond to
the duration of the main computation/communication loopeyrare averages of five
executions after a first warm up execution. In fact, it is @oerto observe in a series of
executions that the first one takes more time than the foligwnes. This is generally
due to automatic energy-saving settings that reduce thedrecies of unused devices
(cores or GPUSs). So, the first execution is penalized by the for those previously
unused devices to get back to their maximal performancebéyes.

In connection with the first two schemes with CPU computaiohlgorithms 2
and 3), several configurations are possible according tantimber of computing
threads used. In the table are presented the configurationglimg the best per-
formances. The first overlapping scheme uses a multi-tece&PU kernel with 8
OpenMP threads and the second scheme uses 8 sequential @idls ke separate
OpenMP threads plus another thread for the communicatiboan be seen that the

130 Patterns for Parallel Programming on GPUs
Version Algorithm 2 Algorithm 3 Algorithm 4 Algorithm 5
Comms MPI async in MPI sync MPI sync in MPI sync

main process| in 1 thread main process in 1 thread
Comps 1 CPU kernel | 8 CPU kernels| 1 GPU kernel| 1 GPU kernel +
using 8 threads in 8 threads | with async call| tansfers in 1 thread
nodes P) Main computation-communication loop time (s)
2 11.664 11.642 1.818 1.919
4 6.545 6.575 1.602 1.501
8 4.138 3.637 1.603 1.523
16 2.943 2.374 1.608 1.522

Table 5.3: Main loop time (s) for the four versions of ovepay withn = 4096

results between these two schemes are globally quite sintlawever, the second
scheme tends to be a bit more scalable when the number of nomteases (up to
20% better). In fact, those two schemes have quite diffdyenaviours.

As mentioned in Section5.2.2, the overlapping of asynabmerMPl communica-
tions may be ineffective due to the lack of separation betmtbe main process and
the communications. In some cases, the communicationsctually performed se-
guentially to the computations during the waiting task. Aefimonitoring of this
scheme has allowed us to observe that the total time of the lmap corresponds to
the sum of the computation time and the communication wgiiime at the end of
the iterations. Moreover, the comparison with the totaktmhthe main loop obtained
with the basic version (Algorithm 1), in the same conditisteows that they are prac-
tically identical. So there is no actual overlapping. A pdial improvement would
be to interleave asynchronous communication tests and ui@tigns as mentioned
in [8]. Nevertheless, this cannot be a generic approachiasdt always possible to
insert communication tests inside a computation kerngi¢atly when using a kernel
from a library like BLAS).

The results of the second scheme are a bit better. Indeedpdpeimes in this
scheme are a little bit smaller than the ones in the first selamd in the basic scheme,
with a difference increasing with the number of nodes. Thids to indicate that
there is an actual overlapping that seems to increase wathuimber of nodes. This
benaviour can be explained by two reasons. The former ig@hamall numbers of
nodes, the computation time is much longer than the commatiaittime, yielding
a low potential of overlapping and thus loop times similattie first scheme. The
latter, already pointed out in the comments of Table 5.1h& tomputation times
decrease faster than communication times when the numlrerdefs increases, thus
increasing the potential of overlapping up to its maximumédaspecific number of
nodes (seemingly a little beyond 16 nodes for our first tworlapping schemes).
Thus, when the number of nodes increases (up to some thdesbbbbservable in
our experiments) the potential overlapping in the secohé®se becomes more and
more important while there is still no actual overlappingthe first scheme. This
explains the performance divergence of those two schemes.

Parallel Programming of Homogeneous or Hybrid Clusters 131

In connection with the last two schemes in Table 5.3 (Aldwnis 4 and 5), the first
obvious result is that the use of GPUs provides an importairt p the computa-
tion time. Moreover, fine monitoring reveals that the ovepiag is effective in both
versions. This is mainly due to the practically completediaaare independence of
the computation and communication activities, as they areopmed on different de-
vices. The two proposed schemes present very similar ghdyadviours and rapidly
reach their performance limit with only four nodes. This @sirom the fact that
in these schemes, the computation time is smaller than timencmication time for
every multi-node configuration. Hence, their respectivapltimes are mainly gov-
erned by their communication times. Those times slightlyré@ase when the number
of nodes increases due to the smaller data amount to sesigtgen each node. But
they rapidly reach their lower limit with just a few nodesisltvorth noticing that con-
trary to the overlapping schemes with CPU computationsdAiigms 2 and 3), the
potential overlapping in these last two schemes (Algorgldnand 5) decreases when
the number of nodes increases. The slight performanceadiife between these two
schemes comes from the overlapping of the GPU transfersstiedfiective in Algo-
rithm 5. Finally, the (bad) performance of this last schenii Wwvo nodes is quite
unexpected. The reasons of this phenomenon are not yetacidashould be the sub-
ject of further investigations.

These first experiments have allowed us to get a performamsgiew of the consid-
ered overlapping schemes and to analyze their respectibalgbenaviours. A more
detailed analysis of their efficiency is given in Section8.4

5.3 Impact of Optimization Degree in Computing Ker-
nels

Optimizing computing kernels run on each computing nodeslassic objective when
developing a HPC code. On modern architectures it meansniaetserial code, par-
allelize the code on the different cores of a node, and attémpse an accelerator
(like GPU) when available. These optimization degrees iane tonsuming to de-

velop, except when an adapted optimized library alreadstexHowever, in any case,
optimizing the computing kernel run on each node can havesat gmpact on dis-

tributed runs on a cluster.

5.3.1 Typical Degrees of Optimization

When running computations on modern CPU cores, we usuallyd#signing a serial
kernel, basically optimized (calledkOin the following). Algorithm 1 illustrates the
design of a basically optimized serial algorithm for one Cédge. We use a trans-
posedl’ B matrix in order to improve cache memory usage and to decteaseimber
of cache misses. We achieve performance.6f GG flops on one core of our tested
cluster (with Nehalem processors). But we can greatly aseehis performance.

132 Patterns for Parallel Programming on GPUs

5.3.1.1 Optimization of CPU Computing Kernels

Algorithm 6 adds OpenMP multithreading to split the main ganation loop run
on each node (the loop over the lines of the local slicel@fs in Figure 5.6). This
is achieved very easily by adding just one compilation diveqone line) before the
main loop. As mentioned in Section 5.2.2, two copiesldindexed on the first dimen-
sion of the array) are used in order to avoid concurrent vedig-accesses. Moreover,
we introduced some local variableB#A and PtB) to accessA andT B elements
with just one dimensional array indexes. However, this ¢gimization had no sig-
nificant impact using thgcc compiler (that probably makes this type of optimization
by itself).

This multithreaded version (hamé&ikl) achieves a performance closé&tos G flops
on one node of our testbed cluster, running 8 threads. Biiteexperiments have
shown that best performances are achieved running 8 OpehMBds on our Ne-
halem processor with 4 physical cores enhanced with hymering. So, we have to
run one thread per logical coreq. 8 threads).

Algorithm 6: Multithreaded CPU kernel (Ck1)

Istlisting

/1 Local slice of Amatrix is stored in Al 2][LOCAL_SI ZE] [SI ZE] .

/1 Local slice of transposed B Matrix is stored in TB[LOCAL_SI ZE] [SI ZE] .
/1 Local slice of resulting C Matrix is stored in (Sl ZE] [LOCAL_SI ZE] .

/1l At step "step", the processor conpute the C block starting at |ine:
i nt OffsetLigneC = ((Me+step) * LOCAL_SIZE)%SIZE;

/1l OpenMP parallelization of the main | oop on Alidx] lines
#pragma omp parallel for
for (int i = 0; i < LOCAL_SIZE; i++) {
doubl e *PtA = &A[idx][i][0]; /1 Ptr on the current Aline
for (int j = 0;) < LOCAL_SIZE; j++) {
doubl e *PtTB = &TB[j][0]; /1 Ptr on the current TB line
doubl e accu = 0.0; /1 Local accunul ator of a new result

/'l Conpute a new value of the resulting C matrix
for (int k = 0; k < SIZE; k++) {

accu += PtA[K] * PtTBK];
}

/]l Store the newresult in C matrix
C[i+OffsetLigneC][j] = accu;

Algorithm 7 is another version (nameck?) that uses the matrix-matrix product
of the famous BLAS library dblas _dgemmroutine) to perform on each node the
computation of the local sub-matrix 6f. The BLAS function call requires several
parameters, specifying the storage format of #hé3 andC' matrices as well as their
respective line and column sizes. This library is well knatwrthe HPC commu-
nity (that never redevelops a matrix-matrix multiplicatjpand is generally supplied
by constructors or by specialized communities. We achievpdrformance close to
9.81 G flops on one core of our testbed cluster. We used the ATLAS versidgheo
BLAS library, but with pure sequential implementation otkaoutine.

Parallel Programming of Homogeneous or Hybrid Clusters 133

Algorithm 7: Sequential BLAS CPU kernel (Ck2)

Istlisting
/1 idx: index of the 2D array of A[2][LOCAL_SIZE][SIZE] to read at current step.
/1l OfsetlLigneC starting line of the C block conputed at current step.

cblas_dgemm(CblasRowMajor, CblasNoTrans, CblasNoTrans , LOCAL_SIZE, LOCAL_SIZE, <+
SIZE, 1.0, &A[idx][0][0], SIZE, &B[0][0], LOCAL_SIZE, 0.0 , &C[OffsetLigneC][0], >
LOCAL_SIZE);

Finally, Algorithm 8 illustrates a computing kernel stilaked on a BLAS library
call, but applied to a subpart of the local slice of thenatrix: processing lines in the
rang€gInfValinc;SupValExc[(kernelCk3). This computing kernel is called from
an OpenMP multithreaded algorithm (see Algorithm 3). SeM@&penMP threads are
run, each thread computes [tefValinc;SupValExc| range and calls th€k3
kernel. Experiments have pointed out that the most effioreag of using kernel
Ck3 was to run only one computing thread per physical cord (ent relying on the
hyperthreading mechanism). We reacBéd30 G flops on our testbed nodes.

Algorithm 8: BLAS CPU kernel to be used in a multithreaded scheme (Ck3)

Istlisting

/1 idx: index of the 2D array of A[2][LOCAL_SIZE][SIZE] to read at current step.
/Il OfsetlLigneC starting line of the C block conputed at current step.

/1 InfVallnc: index of the first line of Alidx] processed by the thread.

/1 SupVal Exc: index of the first line of Alidx] not processed by the thread.

cblas_dgemm(CblasRowMajor, CblasNoTrans, CblasNoTrans , (SupValExc - Infvallnc), —
LOCAL_SIZE, SIZE, 1.0, &A[idx][Infvalinc][0], SIZE, &B[O J0], LOCAL_SIZE, <
0.0, &CJOffsetLigneC+InfValinc][0], LOCAL_SIZE);

5.3.1.2 Optimization of GPU Computing Kernels

Using a GPU allows for the achievement of higher performanben the compu-
tations are adapted to thvector-likearchitecture and programming model. Details
about GPU programming (using CUDA framework for NVIDIA cajds beyond the
scope of this study. However, we aim to show that there ardagitres with CPU
programming according to the optimization process of camgwkernels.

Algorithm 9 shows the source code of a basic CUDA ke@id) (top) and the source
code of this kernel call (bottom). This short code is compasievery classical op-
erations in a CUDA program. It is quite simple as it uses ohggiobal memoryof
the GPU and it accesses data without fully respecting toglescenceThose omis-
sions may induce a performance degradation as a part of theomdus bandwidth
of the GPU is wasted and the thread scheduling may not be apthe achieved a
performance 088.80 G flops on the GTX480 GPU board of each node of our testbed.

If we go a step further in the optimization process, AlgaritiO introduces a
medium optimized GPU computing kern&K1). It uses the global memory of the

134 Patterns for Parallel Programming on GPUs

Algorithm 9: Basic GPU kernel (GkO)

Istlisting
/1 Definition of the GPU conputing kernel
__global__ voi d MatrixProductKernel_GkO(int step)

{

int lig = blockldx.y;

int col = threadldx.x + blockldx.x * BLOCK_SIZE_X_KO;
doubl e res = 0.0;

if (col < LOCAL_SIZE) {
for (int k = 0; k < SIZE; k++) {
res += GPU_AJlig][k] * GPU_BI[K][col];

}
GPU_C[lig+(((GPU_Me+step) * LOCAL_SIZE)%SIZE)][col] = res;

}

Istlisting
/1 Call of the GPU conputing kernel GkO

/1 Description of a block of threads

Db.x = BLOCK_SIZE_X_ KO;

Dby = 1;

Db.z = 1;

/] Description of a grid of blocks

Dg.x = LOCAL_SIZE/BLOCK_SIZE_X_KO + (LOCAL_SIZE%BLOCK_SIZE_X_KO ? 1 : 0);
Dg.y = LOCAL_SIZE;

Dg.z = 1;

/1 Run the grid of blocks of threads with GkO
MatrixProductKernel_GkO<<<Dg,Db>>>(step);

GPU but also itsshared memorya fast memory used like a cache memory explic-
itly managed by the developer in the source code. In the pueviGPU algorithm,
another part of this fast memory was a real cache memoryegntmanaged by the
GPU. Moreover, the Gk1 kernel has also coalescent datasesctsat allow for a bet-
ter scheduling of GPU threads. That kernel is to be used oroadtmensional grid
of thread blocks as presented in Algorithm 11. ThelaFuncSetCacheConfig
function is used before the kernel call in order to increasesize of the shared mem-
ory that can be used by the kernel. This kernel source is loagé more complex
than the first one. Not all developers can write or maintais tbhde. But it achieves
a performance 098.00 G flops on one node of our testbed (instead38f80 G flops
with GKO!).

Finally, Algorithm 12 introduces the usage of the highlyiopted cuBLAS library:
calling the routinecublasDgemm and a transposition kernel (user defined). The
call to the cuBLAS library routine is close to the call to theAsS library routine (on
CPU), but the result is always storeddolumn majomode as in FORTRAN libraries.
Then, it is necessary to transpose the resulting matrixeaetid of each step before
storing it in the entire local slice of th@ matrix. This last GPU kernel is nam&k2
Calling the cuBLAS library is more complex than calling theAsS library on a CPU,
but it remains reasonable for GPU developers and it achi@Vyegh performance of
154.00 G flops on one node of our testbed.

Parallel Programming of Homogeneous or Hybrid Clusters 135

Algorithm 10: GPU kernel using shared memory (Gk1)

Istlisting
__global__ voi d MatrixProductKernel_Gk1(int step)

{
__shared__ doubl e sh_A[BLOCK_SIZE_Y_KI1]J[BLOCK_SIZE_X_K1]; /1 Local "cache" of A

__shared__ doubl e sh_B[BLOCK_SIZE_X_ K1]J[BLOCK_SIZE_X_K1]J; /1 Local "cache" of B

doubl e res = 0.0; /1 Local result storage
int ligC = threadldx.y + blockldx.y * BLOCK_SIZE_Y_K1; /1 Coordinates of the C
int colC = threadldx.x + blockldx.x * BLOCK_SIZE_X_K1; /1 elt conputed

int colA = threadldx.x; /1 Initial indexes of
int ligB = threadldx.y; /1 A colum and B line

/1 For each step: process BLOCK SIZE X K1 elt of the required A line and B colum
for (int step = 0; step < SIZE/BLOCK_SIZE_X_K1; step++) {
/'l Load A data into the shared sh_A array
if (ligC < LOCAL_SIZE) {
sh_A[threadldx.y][threadldx.x] = GPU_A[ligC][colA];
colA += BLOCK_SIZE_X K1;

}
/!l Load B data into the shared sb_B array
if (colC < LOCAL_SIZE) {
i nt ligShB = threadldx.y;
for (int sstep = 0; sstep < BLOCK_SIZE_X_K1/BLOCK_SIZE_Y_K1; sstep ++) {
sh_B[ligShB][threadldx.x] = GPU_B]ligB][coIC];
ligB += BLOCK_SIZE_Y_K1;
ligShB += BLOCK_SIZE_Y_K1;
}
}
/1 Wait for all threads having updated the A and B "cache nenories"
__syncthreads();
/1 Update C value using A and B data upl oaded into the shared nenory
if (ligC < LOCAL_SIZE && colC < LOCAL_SIZE)
for (int k = 0; k < BLOCK_SIZE_X_K1; k++)

res += sh_A[threadldx.y][K] * sh_BJK][threadldx.x];

/1 Wit for all threads having finished to use current values in the A and B +
caches

__syncthreads();

/1 Last step: process the remaining elts of the required A line and B colum
if (SIZE % BLOCK_SIZE_X K1 != 0) {
/'l Cache a last value of A
if (ligC < LOCAL_SIZE && colA < SIZE)
sh_A[threadldx.y][threadldx.x] = GPU_A[ligC][colA];
/] Cache some | ast values of B
if (colC < LOCAL_SIZE) {
i nt ligShB = threadldx.y;
for (int sstep = 0; sstep < BLOCK_SIZE_X_K1/BLOCK_SIZE_Y_K1 && ligB < SIZE; <+
sstep++) {
sh_B[ligShB][threadldx.x] = GPU_B]ligB][coIC];
ligB += BLOCK_SIZE_Y K1,
ligShB += BLOCK_SIZE_Y_K1;
}
}

/1 Wait for all threads having updated the A and B "cache nenories"

__syncthreads();
/'l Update C value with the last A and B val ues upl oaded in the shared nenory

if (ligC < LOCAL_SIZE && colC < LOCAL_SIZE)
for (int k = 0; k < SIZE % BLOCK_SIZE_X_K1; k++)
res += sh_A[threadldx.y][K] * sh_BJK][threadldx.x];
}

/1 Store the final conputed value into the C matrix variable
if (ligC < LOCAL_SIZE && colC < LOCAL_SIZE)
GPU_CJligC][coIC] = res;

136 Patterns for Parallel Programming on GPUs

Algorithm 11: Gk1 GPU kernel call

Istlisting

/'l Description of a block of threads

Db.x = BLOCK_SIZE_X_K1;

Db.y = BLOCK_SIZE_Y_K1;

Db.z = 1;

/] Description of a grid of blocks

Dg.x = LOCAL_SIZE/BLOCK_SIZE_X_ K1 + (LOCAL_SIZE%BLOCK_SIZE_X_K1 ? 1 : 0);
Y K1 ?1

Dg.y = LOCAL_SIZE/BLOCK_SIZE_Y K1 + (LOCAL_SIZE%BLOCK_SIZE_ : 0);
Dg.z = 1;

/1 Maxim ze the size of the GPU shared nenory for the Gkl kernel
cudaFuncSetCacheConfig(MatrixProductKernel_Gk1, cuda FuncCachePreferShared);

/1 Run the grid of blocks of threads with the required kernel
MatrixProductKernel_Gk1<<<Dg,Db>>>(step);

Algorithm 12: cuBLAS based GPU kernel (Gk2)

Istlisting

/1 Conmpute AxB calling cuBLAS library

cublasDgemm(handle, CUBLAS_OP_T, CUBLAS_OP_T, LOCAL_SI ZE, LOCAL_SIZE, SIZE, &alpha, <+
Adr_GPU_A, SIZE, Adr_GPU_B, LOCAL_SIZE, &beta, Adr GPU_R , LOCAL_SIZE);

/1 Transpose Columm Major result into a part of the C matrix

/'l Description of a block of threads

DbT.x = BLOCK_SIZE_XY_TKO;
DbT.y = BLOCK_SIZE_XY_TKO;
DbT.z = 1;

/] Description of a grid of blocks

DgT.x = LOCAL_SIZE/BLOCK_SIZE_XY_TKO + (LOCAL_SIZE%BLOCK_SIZE_XY_TKO ? 1 : 0);

DgT.y = LOCAL_SIZE/BLOCK_SIZE_XY_TKO + (LOCAL_SIZE%BLOCK_SIZE_XY_TKO ? 1 : 0);

DgT.z 1;

/1 Run the transposition kernel on the grid of blocks of threads

TransposeKernel_v0<<<DgT,DbT>>>(Adr_GPU_R, Adr_GPU_C + ((step+tMe)%NbPE) * <«
LOCAL_SIZE = LOCAL_SIZE, LOCAL_SIZE, LOCAL_SIZE);

Parallel Programming of Homogeneous or Hybrid Clusters 137

5.3.2 Experimental Highlighting of the Kernel Optimization

CPU CkO (basic Ckl1 (OpenMP Ck2 (Atlas/BLAS Ck3 (Atlas/BLAS
kernel | optimization) multithreading) monothreaded) + OpenMP
version multithreading)
Gflops 1.60 6.98 9.81 36.30
Speedup 1.0 4.4 6.1 22.7

Table 5.4: Performances of the different CPU kernels

In Table 5.4 are presented the CPU kernels performancesvachon one node of
our testbed, together with their respective speedups dicgpto the first basic version
(CkO). A regular and significant improvement of the perfoncawith the increase
of the optimization degree can be seen. Moreover, we camabteat the C source
code of the different CPU versions remaneasonably simpleUsing the BLAS li-
brary is easy. So, it appears really interesting to devédiepa improvements on CPU,
and specially the last one, calling a BLAS implementatiod adding OpenMP mul-
tithreading. Theoretically, the Atlas implementation b&€tBLAS can be compiled
in a multithreaded way in order to internally use the avddatores on each node.
However, our version of Atlas library was not multithreadadd we had to explicitly
manage multithreading via OpenMP.

GPU kernel version GkO (basic) Gk1 (medium optimized) Gk2 (cuBLAS)
Gflops 38.80 98.00 154.00
Speedup vs GPU-basic 1.0 2.5 4.0
Speedup vs CPU-optim 1.1 2.7 4.2
Speedup vs CPU-basic 24.3 61.3 96.3

Table 5.5: Performances of the different GPU kernels

In Table 5.5 the performances obtained with the differenUG®@rnels are given.
The optimized cuBLAS based kern&K2) is 4.0 times faster than the basic GPU ker-
nel, 4.2 times faster than the most optimized CPU kernel (based oBILAE library
and OpenMP multithreading), and.3 times faster than the basic and sequential CPU
kernel. The final performance improvement of our matrix picickernel on one node
is significant. However, it requires the learning of CUDA gramming in order to use
GPU accelerators. Moreover, if the problem to solve is moremlex or more original
than a simple dense matrix product, it is probable that nalpigptimized libraries
(like BLAS and cuBLAS) will be available. Then the developéll have to design
and implement some highly optimized kernels by himselfsTipe of work requires
a lot of expertise and a long development time, indepengeftihe distribution on
several computing nodes.

In the next section we investigate the impact of kernel ogtition over the perfor-
mance of a distributed version on a cluster, and we attemgetuify the right couples
(kernel optimization, parallel scheme optimization).

138 Patterns for Parallel Programming on GPUs

5.3.3 Decision Chain for Optimization of Computing Kernels

A computing kernel optimization process can lead to longexénsive development.
To enter this kind of process is an important decision. Arlodidecision criteria has
to be considered.

As explained in Section 5.2.1, the first criterion is theaati the considered kernel
in the entire application. Itis not very useful to spend gedfort on optimizationin a
kernel that takes only% or 2% of the total application time. On the other hand, if the
kernel represents a significant part of the total executior,tthen we have to study
the criteria introduced in the following paragraphs.

5.3.3.1 Technical Criterion

When considering a computing kernel, the first criterion\aleate before entering
a new optimization development step is whether its perfogaaan be theoretically
optimized or not. A possible approach is based on countiagdmputing operations
and the memory accesses achieved by the kernel. This appusas the concept of
arithmetic intensityntroduced by NVIDIA in [15]. We patrtially studied this apgach
in [13] and more deeply in a collaboration with the EDF compHr2].

The main steps are:

1. Counting the number of floating point operations achidwethe kerneln,,.

2. Counting the number of memory accesses achieved by thelkéfowever, we
need a model of the architecture, or at least some hypothlesig the hierarchy
and speeds of the different memories. For example, we may ooly accesses
to the main memory, not to cache memories. So, we need to nsakengtions
about the cache size and cache management. Finally, wen@taimber of
accesses in function of the architectungy,; ..

3. Computing tharithmetic intensity i, = n,ps/q.archi, the average number of
operations achieved per memory access.

4. Comparing this value to theritic arithmetic intensity i., defined as the ratio
between the processor speed (flops) and the memory access(bpadwidth).

5. Deducing the theoretical minimal execution time:

* If i, > i., the kernel ixpu-bound it is limited by the computing speed of
the processor, and the theoretical minimal execution téne i
tideal = Nops/ (processor_speed).

* If i, < i., the kernel isnemory-boundit is limited by the memory band-
with, and the theoretical minimal execution time is:
tideal = Na.archi/ (Mmemory_bandwidth).

Parallel Programming of Homogeneous or Hybrid Clusters 139

When the experimental execution time is sufficiently latian the theoretical min-
imal time, then it is interesting to attempt to optimize tleerel code. Moreover, it is
sometimes possible to design new algorithms with an aritienmgensity ¢,) closer
to the critical one4.), in order to better exploit both computing and memory asces
capabilities of the processor.

5.3.3.2 Required Expertise Criterion

The first steps of the CPU kernel optimization atandardand require basic com-
puter science knowledge. The usual optimization includssa dtructure and data
access design in order to read and/or write contiguous melocations and to avoid
cache misses. Then, a simple access to multithreadingbrarikes like OpenMP is
possible for loops performing independent iterations. Avgare developer with basic
knowledge about processor architectures and multithngdtiraries can achieve this
degree of serial optimization and multithreading. Howetee next steps are much
more complex, and very few developers are able to desigmo&d code like BLAS
libraries. Moreover, using multithreading leads to paiac data storage and data
access optimization, requiring specific knowledge.

When using GPUs, the required level of expertise increasieklg. Designing al-
gorithms and codes wittpalescentnemory accesses is the basic training of a CUDA
developer, and is usually well understood. But, developimicit caching algorithms
to exploit the fasshared memoriesf the NVIDIA GPUs requires a higher level of
expertise. Many developers will never reach this seconel lefvexpertise. However,
GPUs do not (yet) support a complex OS with various tasks. ppssible to monitor
and to control what happens on a GPU, and finally to acquirerya high level of
expertise and to achieve very optimized kernels.

In any case, achieving computing kernel optimization rezgian adapted level of
expertise, that takes time to acquire. So, an importansdaeccriterion for starting
an optimization process or not, is the availability (anddbst) of this expertise inside
the development team or the company. Obviously, when atixilsighly optimized
library can be used in the kernel, like BLAS in our benchmasgliation, the right
solution is to learn the usage of this library and to adapk#rael to use it. It often
allows the achievement of high performance with limitedr&xevelopment efforts
and a low expertise level.

5.3.3.3 Use Context Criterion

When the kernel code is used in a multi-node parallel conteg&tkernel time will be

often compared to the communication time. When an oventappf those two ac-

tivities is possible, an efficient strategy is to reduce cotapon and communication
times as much as possible so that they become of the same Bhilemaximizes the
potential overlapping. However, it is shown in Section® #hat it is sometimes effi-
cient to have communication times greater than computaitioes, in order to get an
experimental gain close to the expected one (deduced freqdtential overlapping).

140 Patterns for Parallel Programming on GPUs

Some software is designed for a long term exploitation anantensive usage. In
such cases, the development time remains smaller thanthefdhe execution times
(Tuew << >_(T.zec)) Of the application during its lifetime. So, increasing thevelop-
ment time in order to decrease each execution time a bit maydatrong attraction.
Nevertheless, if the application has a short life cyclef dris to be used rarely, the
optimization effort may be more time consuming than the s@ith@gained times in
all the executions of the optimized version during its lifes.

5.3.3.4 Complete Decision Chain

Finally, before investing into optimization effort of sorme@mputation kernels, one has
to take care of:

(1) the ratio of this kernel in the total execution time of Hpplication,

(2) the distance between the performance obtained andebestical performance of
this kernel with the considered parallel architecture,

(3) the expertise level of the available developers or th&tence of a suitable highly
optimized library,

(4) the opportunity to overlap kernel computations witrerrhode communications
(in a multi-node architecture), and

(5) the estimated total amount of execution times of theiagpbn during its lifetime
compared to the extra development time required.

5.4 Global Experiments and Analysis

The hardware and software components of the parallel systatrhas been used to
perform the following experiments are detailed in Sectidn®

5.4.1 Experimentation Strategy

The different versions of the benchmark application hawenltested on different num-
bers of nodes of the cluster and with different computingards (variable number of
computing threads when relevant). As it is not reasonalvlé et fully pertinent) to
present the entire set of results obtained from those axpeits in this chapter, two
levels of selection have been applied. The first one condbmapplication variants
(overlapping scheme and computing kernel). Hence, Algori2 is not selected as
it has already been shown in Section 5.2.5 that this schemat isfficient at all. The
second selection level is related to the runtime configomat{number of computing
threads). For each selected variant only the runtime cordigun that has obtained
the best performance is retained.

As mentioned in Section 5.2.5, each result is the averaggetéinsecutive execu-
tions after an initial warm-up. Moreover, as a first analpdithe overlapping schemes

Parallel Programming of Homogeneous or Hybrid Clusters 141

128

GFlops

P Ck3-overlap (nth+1th) —+—
Pl Ck3-sync (4th) - < - |

4 P Ck2-overlap (1th+1th) %
e Ck2-sync (1th) —-&1—
T Algorithm 3 = Ck1-overlap (8th+1th) — I -
2 e Ck1-sync (8th) —&—
o Ck0-overlap (1th+1th) - -@ -
| | 9k0-sync (1th) &
1
1 2 4 8 16

Nb of nodes

Figure 5.7: Performance curves of different CPU computiagn&ls with or without
overlapping on a multi-core CPU cluster

already has been presented in that previous section, thentsection is more ded-
icated to the analysis of the actual efficiency of the ovemilag (according to the
expected performance) as well as the efficiency of the comgpkernels.

5.4.2 Experimental Results

For clarity’s sake, the analysis is decomposed into twaospaetording to the type of
computing kernel.

5.4.2.1 Performance on Multicore CPU Cluster

In Figure 5.7 are shown the performance curves achievel, v 16 nodes, by our
different CPU kernels, with no overlapping or with the oe@gping scheme in Algo-
rithm 3. The two bottom curves correspond to the performacbéeved with the&€kO
CPU kernel that includes only some basic serial optimirafgee Section5.1.2 and
algorithm 1) and that uses only one CPU core (no multithregutiside this kernel).

In the CkO CPU kernel with no overlappingdk0-synccurve), the communication
time ranges frons.2% up t020.4% of the entire application time respectively from
2 up to 16 nodes. Moreover, it i8.4% up to 25.8% of the computation loop time.
This computing kernel has limited performance, but whenrtheber of nodes in-

142 Patterns for Parallel Programming on GPUs

creases it becomes interesting to overlap communicatigthscemputations to save
up t025.8% of the computation loop time (see Section5.2.1). Then we fayple-
mented the overlapping scheme in Algorithm 3, using an exglipenMP thread to
achieve MPI communications, and another thread to run thgatation kernel (see
Section 5.2.3). Finally, the performance cui&D-overlapstays quite similar t&€kO-
syncbut shows a small improvement @f nodes.

We have followed a very similar approach with @ikl CPU kernel, that is a multi-
threaded version of the previous one. Cur@d-synandCkl-overlaprespectively
show the performance achieved without and with overlapdirttas to be noticed that
due to technical constraints in OpenMP, the actual impleatiem of theCk1-overlap
is Algorithm 3. However, these two schemes have the samergesshat consist of
having several computing threads and one communicatieadhrThe analysis of the
curves shows that runnirigthreads on the hyperthreaded cores of our Nehalem pro-
cessors has led to a significant decrease in the computatienThe communication
time remains unchanged, and fr@to 16 nodes it ranges frorm2.1% to 35.1% of the
application time, and from4.1% to 55.8% of the computation loop time. In this con-
text, the overlapping of computations with communicatisnsighly attractive. With
8 and16 nodes, the performance increase is significant and justifeedevelopment
effort of the overlapping.

The next curves concern the usage of a BLAS library kerndagAimplementa-
tion), identified as th€k2 CPU kernel in Figure 5.7. This is a sequential kernel using
only one core, but with a very high degree of optimization. thAthis kernel, the
communication time ranges froi3.5% to 37.1% of the application time, and from
16.5% t0 62.6% of the computation loop time. The performance increase eCk2-
overlapcurve, compared to thék2-synaurve, starts as soon asiodes are used and
becomes surprisingly strong witté nodes. In fact, when usintt nodes with this
computing kernel, communications become longer than cséatipus (in the compu-
tation 100p): Teomm = 1.7 X Teomput- Then, the loop computation time appears to
be very close to the communication time: the time saved byottezlap is93% of
the expected one. Ofinodes, the communication time is less than the computation
time (Ziomm = 0.86 X Teomput), @nd the time saved by the overlap is oddfs of the
expected one. It seems that overlapping inter-node conuations with node com-
putations is better when the computation time is smaller tha communication time.
However, in this case the performance is bounded by the comwuations. Usually,
designers of parallel codes try to get communications shtitan computations. See
Section 5.4.3.1 for a detailed analysis of this phenomenon.

The last performance curves correspond to the variant oapipdication with the
same sequential BLAS kernel, but called in parallel fronfiedént threads in order to
use the available cores of the CPU. Parallel runs of the BL&&d& have been tested
with 2, 3, on up to12 threads. With no overlapping, the number of threads progidi
the best performance is constant and corresponds\dth the overlapping, the best
number of threads varies with the number of nodes (and sothétisize of the sub-
problem run on each node). With 4 and8 nodes the best performance is obtained
with 8 computing threads (and one communication thread), whille W nodes only

Parallel Programming of Homogeneous or Hybrid Clusters

143

256

128 -

GFlops

GkO-native-ovlp - -X- -

GkO-total-ovlp —+—

GkO-sync |

Nb of nodes

256
Gk1-total-ovlp —+—
Gk1-native-ovlp - -X- -
128 - Gk1-SynC rrrrr X |
g
kel
T
O

32

Nb of nodes

Figure 5.8: Performance of the basic Figure 5.9: Performance of the opti-

GkO kernel on a GPU clus-

mized Gkl kernel on a

ter GPU cluster
256 ‘
Gk2-total-ovlp —+—
s Gk2-native-ovlp - - -
128 F\.. Gk2-sync >k
8
ie]
G
64 - i
32 ‘ \ |
1 2 4 8 16
Nb of nodes

Figure 5.10: Performance of the highly
optimized Gk2 kernel on a

GPU cluster

4 computing nodes (and one communication thread) are nege3deese results are
depicted by th€k3-overlapcurve. Compared to thek3-synaurve, the improvement
in the overlapping is visible and significant fro2rto 16 nodes. In this context, the
communication time is greater than the computation timdar wjt8 and 16 nodes.

However, the overlap is close 100% of its expected value only withé nodes when

Tcomm = 5.5 X Tcomput-

5.4.2.2 Performance on GPU Cluster

We have experimented each of our three GPU kernels with fanedlel variants: with
no overlapping (Algorithm 1 with a GPU kernel), with a natiweerlapping mecha-

144 Patterns for Parallel Programming on GPUs

nism (Algorithm 4), and with an overlapping including the @WBPU data transfers
(Algorithm 5). In Figure 5.8 are given the three performaogeres of theGkOkernel,
a basic GPU kernel not using the fastared memoriesf the GPU but using only
its global memoryand some registers). The bottom curve illustrates theopmadnce
of the version with no overlap of the inter-node communaagi GPU computations
and data transfers between CPUs and GPUs. We have enfonteloreyization of
the GPU kernel so that these operations do not overlap. Frm2 nodes the perfor-
mance increase is poor, and is stronger fibto 16 nodes. Usin@ nodes doubles the
computing power, but inserting inter-node communicatisrasgreat penalty that seri-
ously limits the impact of a second GPU. When increasing thmlyer of nodes from
2 to 16, the communication time increases very slightly (frar89s to 1.58s) while
the computing power increases strongly. So the performeamce increases signifi-
cantly up tol6 nodes. The upper performance curves correspond to theappanh
modes. The penalty of inter-node communications is notitemfrom 1 to 2 nodes,
but on4 nodes the computation time (on the GPU) is less than the-maee com-
munication time. So the overlapped execution time is lichibg the communication
time that remains approximately constant, and the perfocmaeaches its limit. Our
gigabit Ethernet interconnection network appears ingafiito support GPU nodes:
they require and produce data faster than this network a#e.ro

The highest curve shows the performance of the versionaweirig inter-node com-
munications with both GPU computations and CPU/GPU datesteas. This code is
more complex to develop (see Section 5.2.4.2 and Algorithiou it achieves slightly
better performances fromto 16 nodes than the native overlapping version. However,
performances are a little bit weaker dmodes. As already mention in Section 5.2.5,
this phenomenon is still under investigations.

The results obtained with tt@k1 GPU kernel are given in Figure 5.9. This kernel
code is more complex and uses the feisared memoriesf the GPU like a cache
memory explicitly managed by the developer at applicaterel. With or without
any overlap mechanism, we can observe that best perfornisotéained on onlyt
computing node. Performance of this computing kernel onnaae is approximately
three times greater than performance of @kO kernel, and computation times are
smaller than communication times. So the communicatioediof our gigabit Eth-
ernet network always compensate the computation times wasing several nodes,
and the total execution time does not decrease. This phemmmie more visible
with the third GPU kernel@k2), using the highly optimized cuBLAS library. Fig-
ure 5.10 shows very high performance on ohlgode (close td54G flops), and a
strong performance decrease when using more nodes, evea toital overlap of the
communications with both computations and data transfers.

Parallel Programming of Homogeneous or Hybrid Clusters 145

5.4.3 Discussion
5.4.3.1 Assessment of Overlapping Strategy on CPU Clusters

Finally, overlapping communications with computationsamulticore CPU clus-
ter is successful with the strategy based on an expliciathrenning and managing
the MPI communications (see Section 5.2.3). However, ibisabvious to reach the
ideal execution time: usually we obselVg ...y > maz(Teomputs Teomm). Consid-
ering that in the ideal cas&“?, = (T.omput + Teomm) — MaT(Teomputs Teomm) =

saved

AN (L eomput s Leomm), detailed experiments on our cluster have shown that:

saved?

« when0 < TTT% < 0.95, we get:Tyqpeq < 0.30 x Trdeal

« whenl.0 < TTTT” we can achievel,,,.q = Ti%,

So, although obtaining ... = 779°*, seems attractive, usually it providiegfficient
results as the communication times are longer than the ctatipo ones. Even if
the overlapping strategy can lead to achievifg% of the expected gain, this gain
is strongly limited by the small overlapping potential. Mower, it may require a lot
of resources for a limited extra-speedup. For exampleChk&overlapperformance
curve increases up tH nodes, but the minor increase frdino 16 nodes does not
justify doubling the cluster size. It is important to knowwheo track and achieve
overlapping to improve the performance, but not to track @lkcosts.

5.4.3.2 Assessment of Overlapping Strategy on GPU Clusters

Our experiments show that an overlapping mechanism carntdesignificant perfor-
mance increase on a GPU cluster. We can evaluate the effiapiice two overlap-
ping strategies that have been implemented. The synchsanqplementation of the
computation loop can be modeled with:

e = comp + ,—rtrans + Tcomm

loop

the execution time of the native overlap strategy is:

Tnative—ovlp

loop = Tirans + mcwj(Tcompa Tcomm)

and the execution time of the more complex and total ovetigpegyy is given by:

Ttotal—ovlp

loop = max<Tcomp7 Tirans + Tcomm)

As on the CPU cluster, we measurégd,,,, Ti-ans and 7o, with the (strongly)
synchronous version (no overlapping). Then, the idealdséwees that are expected
for each overlapping strategy are computed and compardtetadtual saved times
obtained in the experiments. Finally, the ratifiS, .../ Tcomp (OF Leomm/(Leomp +
Tirans)) and Tyueq/ T4 are deduced. We obtained very different results from the

Sav

ones with the CPU kernels. With tligkO kernel:

146 Patterns for Parallel Programming on GPUs

» with the native overlapping strategy we obtain:
0.75 < Toomm/ Teomp < 8.4, and0.84 < Tyyppeq/Ti%% < 1.02

 with the total overlapping strategy we obtain:
0.75 < Teomm/ (Teomp + Tirans) < 7.8, and0.92 < Tyypeq/Ti%% < 1.12

Compared to the CPU kernel results, we have a greaterfatig, /7., due to the
very high speed of the GPUs. Therefore communication timmeskty exceed compu-
tation times (even when adding the transfer times). Moredkie overlapping being
very efficient in those contexts, the major part of the expegain of the overlap-
ping is actually achieved: at least% with the basic and native overlapping strategy.
When using the total overlapping strategy, we have measaugain of time greater
than the expected oné1(0% of the expected time). Obviously, such results are not
coherent with the theory. However, they can be explainedeést partially) by the
additional GPU synchronization that had to be used in thi bassion with no over-
lapping in order to force the CPU to wait for the GPU kernefrtieyation. We remind
the reader that by default a GPU kernel call is non-blockiBgch synchronization
induces additional costs that may lead to measuring longepatation times than
the real ones.

Anyway, independently of the problem of the exact corresigmice of the monitored
activities between two application variants, it appeaas tine native overlapping strat-
egy on a GPU cluster is very easy to deploy, the total oventapsgtrategy is not so
complex (see Section5.2.4), and both are successful. Veadansto0% of the ex-
pected time with &7..,,m /T omp ratio aroundL, and almost00% with a higher ratio.
However, as we claimed for CPU clusters, it is not intergstorun parallel programs
with strongly dominant communication times. In Figure 5.8tebng improvement
when using overlapping mechanisms can be observed, betitheo global improve-
ment when using more thanhnodes with these mechanisms (using more resources is
uselesk

Analyses of th& ..,/ Teomp AN T sqpeq/ T, ratio for GklandGk2kernels would
lead to similar results to thékOones. However, they have a limited interest. As ex-
plained previously, our interconnection network is not &a®ugh to use these kernels.
A network upgrade would be required (towards Infiniband fa@meple), or the use of
benchmark requiring many more computations.

5.4.3.3 Looking for the Most Interesting Solution

Due to the limited capacity of our gigabit Ethernet intengection network, the num-
ber of nodes providing the best performance of our benchmpeosklem decreases
when the speed of the computing kernel increases. Tablaifarizes the configu-
rations most suited to the different kernels. With all theJdgrnels, it is interesting
to use thel6 nodes of the cluster and to implement a multithreaded oppitg of
computations with communications. However, when runnirgfastest CPU kernel,
the performance increase frahto 16 nodes is small.

Parallel Programming of Homogeneous or Hybrid Clusters 147

Kernel | Most suited parallel scheme Nodes| Gflops
CkO | Overlapping (1 comp. thread and 1 comm. threpd) 16 22
Ck1 | Overlapping (8 comp. thread and 1 comm. threpd) 16 58
Ck2 | Overlapping (1 comp. thread and 1 comm. threpd) 16 84
Ck3 | Overlapping f comp. thread and 1 comm. thread) 16 87

GkO | Total overlapping (commvscomp. + trans.) 4 92
Gkl | Mono-node exec. (no comm.) 1 98
Gk2 | Mono-node exec. (no comm.) 1 154

Table 5.6: Configurations providing the best performance&zh computing kernel

When running GPU kernels, the most interesting number oésaldcreases. With
the basidGkOGPU kernel (easy to design) it is better to use aniypdes, and to imple-
ment a total overlapping of communications with both comapanhs and CPU/GPU
data transfers. With faster GPU kernels, it is better to udg ® node to run this
benchmark problem. Then, no inter-node communicationgsired and it is not
necessary to implement any overlapping mechanism.

Obviously, it could be interesting to run a larger benchmaiikh bigger matrices.
But problems to solve are not alwaysinitely scalable Sometimes we have to solve
a large but finite problem. Then, we can look for the fastekitgm, with limited
development time and with limited computing resources.othe adapted high per-
formance libraries are available (like BLAS and cuBLAS i edample) it is highly
recommended to (test and) use such libraries. When som&pregpecific high per-
formance kernels have to be developed, a pertinent trddeetfeen the development
time (and cost) and the gain in execution time must be fourmdt.ekample, we can
track to:

» decrease the execution time under a fixed threshold, no,moiess,

« minimize the sumTye, + > (Tosee)

When spending a lot of time (and money) to develop a very fasiputing kernel, it
is possible to exceed the capacities of the available ioterection network. Then, the
application performance will be limited to the speed ackiewith only a few nodes,
or even only one node (if the problem size fits the memory sizere node). Then,
it may be more interesting to spend less time developing dinepaiting kernel, and
to spend some time overlapping computations with commtioita in the parallel
program. Another possibility is to decrease developmems tand cost, and to buy a
better interconnection network. The most suited strategpedds on each use-case.

5.5 Conclusion

Due to the high hardware complexity of current processooslecoptimization is
mandatory for high performance computing codes. But amuptition process is,

148 Patterns for Parallel Programming on GPUs

in some sense, an endless process that may lead to impodtantievelopment costs
for only small performance improvements. A methodologyeiguired to avoid this
type of pitfall.

In this chapter we have investigated the optimization psea# a toy application
(a dense matrix product) on a multicore CPU/GPU clusterolighout this process,
some methodologies have been proposed to develop optimameputing kernels and
efficient overlapping of communications with computatioasd to identify the most
interesting configurations and deployments on CPU or GP&lets. Following these
methodologies, different possible degrees of optimiratiave been presented and
several series of criteria have been proposed to help dexelaecide up to which
degree of optimization the development effort has to be led.

Our study shows that even on a basic test application, afisigni increase in the
code complexity (especially in GPU kernels) can be obsewiddthe increase of the
optimization degree, requiring more expertise to develupraaintain and leading to
longer development times.

The variants of the application obtained have been fullycherarked with differ-
ent runtime parameters (when pertinent) and different garditions of the test plat-
form. Those benchmarks have pointed out that the higheshization degrees may
sometimes be useless as they bring no visible gain. Morgtheeexperiments have
also shown that a strong limitation that quickly appearwiptimized codes comes
from the interconnection network. In fact, current claakitetworks such as Gigabit
Ethernet are not suited to the interconnection of powerfwlas running optimized
computing kernels.

In the near future, we plan to achieve complementary bendtsnaith different
problem sizes and with different clusters, in order to comfine generality of our
analysis and methodology. Moreover, we aim at studyingratkerlapping schemes
as well as CPU kernels using vector units (like SSE or AVX dnes

References

[1] “Open Source High Performance Computingittp://www.open-mpi.
org

[2] “OpenMP multi-threaded programming APHKittp://www.openmp.org

[3] F. Baude, D. Caromel, N. Furmento, D. Sagnol, “Overlagptommunication
with computation in distributed object systems”, in P. $Jd&. Bubak, A. Hoek-
stra, B. Hertzberger, (Editors), “ High-Performance Cotimmuand Network-
ing”, Lecture Notes in Computer Science, 1593, 744—-753n8pr Berlin / Hei-
delberg, 1999. doi:10.1007/BFb0100635

[4] E.M. Daoudi, A. Lakhouaja, H. Outada, “Overlapping Camgtion/Communi-
cation in the Parallel One-Sided Jacobi Method”, in H. KgdcHBoszormeényi,
H. Hellwagner, (Editors), “Euro-Par 2003 Conference”, fuee Notes in Com-
puter Science, 2790, 844-849, Springer, 2003. doi:10/90@73-540-45209-
6.115

Parallel Programming of Homogeneous or Hybrid Clusters 149

[5] L.D. de Cerio, M. Valero-Garcia, A. Gonzalez, “Ovegrfang Communication
and Computation in Hypercubes”, in L. Bougé, P. Fraignjafd Mignotte,
Y. Robert, (Editors), “Euro-Par '96 Conference, \Vol. I”, dtare Notes in Com-
puter Science, 1123, 253-257. Springer, 1996. doi:10/B2B40-61626-83

[6] G.I. Goumas, N. Anastopoulos, N. Koziris, N. loannou,v&dapping com-
putation and communication in SMT clusters with commoditierconnects”,
CLUSTER, 1-10, IEEE, 2009. d0i:10.1109/CLUSTR.2009.5928D

[7] R.L. Graham, S.W. Poole, P. Shamis, G. Bloch, N. BlochCHapman, M. Ka-
gan, A. Shahar, I. Rabinovitz, G. Shainer, “Overlapping patation and com-
munication: Barrier algorithms and ConnectX-2 CORE-Direapabilities”,
IPDPS Workshops, 1-8, IEEE, 2010. doi:10.1109/IPDPSW 2170854

[8] T. Hoefler, A. Lumsdaine, “Message Progression in PakalComput-
ing - To Thread or not to Thread?”, CLUSTER, 213-222, IEEEQ&0
doi:10.1109/CLUSTR.2008.4663774

[9] T. Hoefler, A. Lumsdaine, “Overlapping Communicatiorda®omputation with
High Level Communication Routines”, IEEE Internationah$yosium on Clus-
ter Computing and the Grid, 572-577, 2008.

[10] J.B. White, J.J. Dongarra, “Overlapping Computatiard &Communication
for Advection on Hybrid Parallel Computers”, IPDPS, 59-6FEE, 2011.
doi:10.1109/IPDPS.2011.16

[11] T.H. Kaiser, S.B. Baden, “Overlapping communicatiordaomputation with
OpenMP and MPI”, Sci. Program., 9(2,3), 73-81, Aug. 20tp:/dl.
acm.org/citation.cfm?id=1239928.1239932

[12] W. Kirschenmann, “Towards sustainable intensive cotimg kernels - Vers des
noyaux de calcul intensif perennes”, PhD thesis, Lorraine/éfsity, 2012. (in
French)

[13] W. Kirschenmann, L. Plagne, S. Vialle, “ParalleéP$ on Multi-Core CPUs and
Many-Core GPUs”, Transport Theory and Statistical Phys3€¢2), 255281,
2010.

[14] V. Marjanovic, J. Labarta, E. Ayguadé, M. Valero, “Olapping com-
munication and computation by using a hybrid MPI/SMPSs egagn”, in
T. Boku, H. Nakashima, A. Mendelson, (Editors), “ICS”, 5+38CM, 2010.
doi:10.1145/1810085.1810091

[15] NVIDIA, “NVIDIA CUDA C Programming Guide 4.0, 2011.
http://developer.download.nvidia.com/compute/DevZon e/
docs/html/C/doc/CUDA_C_Programming_Guide.pdf

[16] A.K. Somani, A.M. Sansano, A.K. Somani, A.M. Sansandjriimizing over-
head in parallel algorithms through overlapping commuiecécomputation”,
Technical report, Institute for Computer Applications ici€hce and Engineer-
ing, 1997.

