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Abstract

This chapter proposes a study of the optimization process ofparallel applications to
be run on modern architectures (multi-core CPU nodes with GPUs). Different opti-
mization schemes are proposed for overlapping computations with communications,
and for computation kernels.

Development methodologies are introduced to obtain different optimization degrees
and specific criteria are defined to help developers find the most suitable degree of
optimization according to the considered application and parallel system. According
to our experience in industrial collaborations, we analyzeboth performance and code
complexity increase. This last point is an important issue,especially in the industry,
as it directly impacts development and maintenance costs.

Complete experiments are performed to evaluate the different variants of a bench-
mark application that consists of a dense matrix product. Inthose experiments, dif-
ferent runtime parameters and cluster configurations are tested. Then, the results are
analyzed to evaluate the interest of the different optimization degrees as well as to
validate the interest of the proposed optimization methodology.

Keywords: message passing, multithreading on multicore, vectorization on GPU,
communication-computation overlapping, computing kernel optimization, deployment.
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5.1 Motivations and Objectives

During recent decades, parallel computing has known a greatdevelopment. Great im-
provements have been made on the software side (efficient standard parallel libraries
for communications [1] or thread management [2]) and on the hardware side (increase
in the number of cores, development of new devices like GPUs).

However, with the emergence of new types of parallel architecture, whose complex-
ity has increased with the levels of explicit hierarchies, and the never-ending demand
for efficiency by users (for intensive computations like physical simulations and so
on), computer scientists are still faced with the challengeof optimally exploiting the
power of the latest systems.

According to our past experiences in parallel design and developments, and the nu-
merous traps we have observed, we propose in this chapter a didactic study of the
design and implementation of a common scientific application. Our case-study deals
with the very classical matrix product. Our objective is to detail the main choices a
developer would have to face for the design, implementationand optimal use of such
an application on a modern cluster.

5.1.1 Programming Modern Distributed and Parallel Architectu-
res

Modern parallel architectures are mainly clusters of complex and powerful nodes,
typically multicore CPUs sometimes enhanced with hardwareaccelerators like GPUs
(often denoted as hybrid nodes). Although these architectures are cheap, they can lead
to very high performances. This is why they are extensively used in large parallel
systems. However, they include two or three different parallelism grains that require
as much parallel programming paradigms. For example, we canimplement parallel
algorithms using:

• MPI alone, deploying (approximately) one MPI process per CPU core,

• MPI with OpenMP, deploying at least one MPI process per nodeand several
OpenMP threads per MPI process,

• MPI with CUDA, to program a cluster of GPUs, deploying at least one MPI
process per node, and running some grids of CUDA threads on GPUs from the
MPI processes,

• MPI with OpenMP and CUDA, to program a cluster of nodes including both
multicore CPUs and GPUs, deploying at least one MPI process per node, some
CPU threads per MPI process, and running grids of GPU threadsfrom one or
several CPU threads.

The last configuration is the most complex one but it allows for the implementation
of codes that can run on both CPU and GPU cores of each node. Moreover, it enables
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the overlapping of CPU computations, GPU computations, CPU/GPU data transfers
and inter-node communications. However, the cost of such advantages is a higher
complexity to develop, debug and optimize a code including all these features. Finally,
when running on some benchmark data sets, it can be very hard to validate and certify
this type of codes. In the same way, the higher design, development and maintenance
cost of such codes sometimes may be prohibitive in comparison to the gains obtained
relative to a more simple (and thus cheaper) parallel software.

We propose in this chapter a methodology, composed of basic and generic devel-
opment rules and implementation examples, to ease development of efficient multi-
paradigm and multi-grain parallel codes on multicore CPU and manycore GPU clus-
ters.

5.1.2 Benchmark Application

In order to ease the didactic description of our approach, wehave chosen the very
classical application of dense matrices product.

We denoteA andB as two real square matrices of sizen × n and we want to
computeC = A × B on a parallel system containingP nodes. For this purpose, we
adopt a classical algorithm on a ring topology of the nodes bydistributing vertical
strips of theB andC matrices (whose widths aren/P columns) over the nodes. In
the same way, theA matrix is decomposed in horizontal strips (whose heights are
n/P lines) that are initially distributed over the nodes. Then,on each node of the
system, the local square sub-matrix ofC (of size n

P
× n

P
) corresponding to the local

strips ofA andB that are owned at that time is computed. Once this is done, the
horizontal strips ofA are cyclically shifted from one node to the following one in the
ring, using MPI communications. Then, the local computations of other sub-matrices
of C are done and so on until all the sub-matrices ofC are computed. It can be
deduced easily from the size ofC (n× n) and the number of nodes in the system (P ),
thatP local multiplication and communication steps will be necessary to perform the
whole computation ofC and to returnA in its initial state.

For clarity’s sake, the initial distribution of the matrices is given in Figure 5.1, and
the first four steps of the algorithmic process are illustrated in Figure 5.2.

In addition to that data distribution, the local part of matrix B on each node is trans-
posed in order to optimize the memory accesses a little bit byhaving the same line size
to parse betweenA andBT during the product. So, we obtain the basic algorithmic
scheme, involving only CPU computations and synchronous communications, given
in Algorithm 1.

In this algorithm, the communications are not explicitly described because there are
several ways to implement such an operation, even in a synchronous/blocking mode.
For example, with the MPI library, this can be efficiently achieved by the function
MPI Sendrecv replace .

In fact, this point is one of the key issues in the optimization process of a parallel
application. One aspect of the scope of this chapter is to look for the best option
among the different possibilities either at the design level or at the implementation
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Figure 5.1: Initial distribution of the matrices over five nodes

one. Before exploring the ways the communications can be performed in Section 5.2,
we briefly describe in the next subsection the parallel system that has been used to
obtain all the experimental results that are reported within the chapter.

5.1.3 Experimental Context

The parallel system that has been used for the entire set of experiments presented in
this chapter is a cluster composed of 16 nodes each includingan Intel Nehalem quad
core at 2.67Ghz, 6 Gb RAM and a NVIDIA GeForce GTX480 GPU. The intercon-
nection network is a Gigabit Ethernet with a DELL Power Object 5324 switch.

Concerning the software environment, the OS is a Linux Fedora 64bits. The C
compiler is the GNU C version 4.5.1 and the CUDA version is 4.2.

5.2 Interest and Difficulties of Computations and Com-
munications Overlapping

The problem of overlapping computations and communications in parallel applica-
tions has been extensively studied in the last two decades, see for example [3–5,11,16],
and is still an active research topic [6,7,9,10,14].

The obvious advantage of such optimization, when it can be ideally realized, is to
completely hide one of the two actions (computations or communications) behind the
other one in terms of execution time. A simple example is given in Figure 5.3 where
each box corresponds to the computation of its label.

Nevertheless, the seizure of such gain often requires important modifications in the
parallel algorithm and most often the overlapping is not complete but only partial.
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Figure 5.2: First four steps of the parallel process for 5 nodes

In some cases it is not even pertinent to try to overlap because the gains are much
smaller than the effort of design and implementation. So, the first step when studying
a potential overlapping of computations and communications is to check if it is worth
doing it! This is what is discussed in the following paragraph.

5.2.1 Decision Criteria to Implement Overlapping

Ideally, when working on the development of a parallel application, one may want to
obtain its maximal optimization in order to obtain the smallest execution time. How-
ever, in practice this is generally not what is done, save forsimple cases where optimal
designs and implementation are obvious. This is due to the ratio between the required
effort to add a given enhancement and its gain over the application. Although this
ratio is often a secondary criteria in academic research because fundamental studies
aim at exploring all the potentiality of a given parallel problem, this becomes a major
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Algorithm 1: Basic parallel algorithm for matrices product
Initial data: A, BT andC arrays are distributed over the nodes as in Figure 5.1.

BT is the transposed version of the local part ofB on the current node.

1: for all nodeNodeId ∈ {0, . . . , P − 1} do in parallel
2: for step = 0 toP − 1 do
3: // Loop over the global steps as in Figure 5.2
4: LineOffset← n

P × ((step +NodeId)%P )
5: for i = 0 to n

P − 1 do
6: // Computation of a square sub-matrix within the local vertical strip of C
7: for j = 0 to n

P − 1 do
8: val← 0
9: for k = 0 to n− 1 do

10: val← val + A[i][k] × BT[j][k]
11: end for
12: c[i + LineOffset][j] ← val
13: end for
14: end for
15: Synchronous communications for cyclically shifting the strips ofA

over the nodes by one position to the right
16: // The result of this operation is that:
17: // - the current local strip ofA is sent to node(NodeId + 1)%P

18: // - the new local strip ofA is received from node(P +NodeId − 1)%P

19: end for
20: end for all

element in the industrial context. The main difference between these two contexts
comes from the fact that the industry is directly linked to economic constraints. So,
the difficulty to design, implement and maintain an application has an important im-
pact over the cost of the application (conception time, number of people required and
their competence level).

So, before bringing any improvement to an application, its level of pertinence must
be measured. Moreover, the common approach (of good sense) consists of bringing
the improvements with the highest gains in first and then following that with the im-
provements of decreasing gains. So, the improvements are sorted in decreasing order
of their respective gains.

Now, let us define the optimization ratio of an application as0% corresponding to
no optimization (no improvement done) and 100% corresponding to the most efficient
version of the application that can be made (all the possibleimprovements are done).
According to our experience, we have been able to observe that when someone brings
a series of improvements to an application by following their decreasing gain order,
the difficulty tends to increase exponentially with the optimization ratio. Moreover,
since the improvements are performed in decreasing order oftheir gains, the gain
curve tends to slow down when increasing the optimization ratio. These facts are
empirically illustrated in Figure 5.4.
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Figure 5.4: Difficulty degree and performance gain evolution in function of the opti-
mization ratio

So, a decision criterion for bringing improvements to an application can be deduced
by finding a specific threshold inside the optimization ratiointerval where a satisfying
trade-off between the difficulty degree and the overall gainis achieved. Another way
to get a decision criterion is to consider each improvement separately and to compare
its ratio between its estimated difficulty degree and its potential gain with a given
threshold.

However, those criteria require achievement of a good idea of the difficulty and gain
curves. Although it is quite subjective to evaluate the difficulty curve, the gain curve
can be obtained quite easily by monitoring the time consumption of every part of the
application and by ordering them in decreasing order.

In a parallel application, we can distinguish two main typesof time consumption.
The former is related to the computations and the latter concerns the communications.
Concerning the computations, the monitoring generally consists of determining in
which functions of the program the majority of the computation time is passed. This
allows the designers/programmers to focus their optimization/parallelization effort on
the most time consuming parts of the application. In the sameway, the monitoring of
the communications provides the time passed in each communication phase and this
information directly influences the use of an overlapping technique.
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Such an improvement will depend initially on external parameters like the available
time/budget to design and implement such optimization and the importance degree of
the application performances. Those criteria have to be considered before any analysis
of the pertinence of including overlapping in the application. Then, parameters related
to the development and exploitation contexts of the application will play a role during
the analysis. We can cite for example the software environment, the parallel system
architecture and the number of available nodes for production.

Once the external parameters have been considered, the pertinence of the overlap-
ping should be evaluated according to two criteria. The firstone checks that the mea-
sure of the maximumpotential gain of the overlapping is large enough. That measure
is obtained by selecting the minimum time consumption between computations and
communications and by computing the ratio of this minimum tothe total execution
time of the application. The prior selection of the minimum comes from the fact that
an ideal overlapping will at best completelyhide(overlap) the shorter time consuming
activity inside the other one. Thus, the time of that hidden activity will be removed
from the total execution time. So, the potential gain is directly linked to the ratio be-
tween the computation and communication times. Its maximumvalue is reached when
those two activities take approximately the same time. Thisis illustrated in Figure 5.5
where we consider, for clarity’s sake, that there is no additional cost in the application
other than the parallel computations and the communications. In this theoretical case,
the maximum potential overlapping is 50% when both activities take the same time as
their overlapping makes the application twice as fast (50% shorter). In real applica-
tions, the overall behaviour will be similar to the one depicted in this figure except that
the maximum potential of overlapping will be under 50% due toconstant additional
costs in the application (initialization, post-treatments, termination,etc.).
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Figure 5.5: Potential overlapping gain according to the ratio between the computation
time and the communication time in an application with no other costs

For example, if we consider an application where the computation and communica-
tion times are equal and correspond to 40% of the total execution each. Then, although
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the potential gain will be maximal, it will be limited to 40% of the initial execution
time. Now, let us imagine that the computation time of the application is 85% of its
total execution time, and the communication time is only 1%.Then, although any
ideal overlapping (if it exists) would completely hide the communications, it would
obtain a maximal gain of only 1% of the total execution time. This is a very small
gain according to the design/implementation effort required and the complexity in-
crease of the source code. In such a case, it is very likely that the overlapping would
be considered not pertinent.

In fact, that first criterion is fulfilled when the potential gain becomes large enough
according to a given threshold, corresponding to the trade-off limit between optimiza-
tion and design/implementation/maintenance cost. It provides an interesting filter but
it is quite coarse due to the fact that it is totally theoretical and is based upon the
hypothesis that an ideal overlapping can be found. However,this is generally not pos-
sible in practice and it is very common that only a part of the parallel computations
and communications can actually be overlapped, reducing the final gain.

This is why a more subtle criterion is necessary once the firstfilter is passed. It is
important to keep in mind that this second criterion should be checked only when the
first criterion is verified because it requires a deeper analysis of the application algo-
rithms and potentially a finer monitoring. It consists of evaluating the quality of the
best overlapping scheme found by analyzing the parallel scheme of the application.
This quality is measured by the percentage of the shortest activity that actually can
be overlapped with the other activity. It represents, in some sense, the maximal de-
gree of overlapping that can be achieved between computations and communications.
The maximal quality (100%) corresponds to the case where oneof the activities is
completely overlapped by the other one.

Finally, the maximal global gain that can be expected (in percentage of the total
execution time) is deduced by multiplying the first ratio (used in the first criterion)
with that quality measure. The second criterion is fulfilledfor sufficiently large values
of this global gain.

For example, let us consider that 48% of the total execution time of an application is
spent for computations and 46% for the communications. The first criterion is fulfilled
since the ratio of the shortest activity is 46%. However, if the best overlapping scheme
that is found can only overlap 10% of the communications withthe computations
(quality measure), then the actual maximal gain will be only46%×10%=4.6%, and
the second criterion would probably not be satisfied.

In conclusion, we can say that the first criterion is used to decide whether a de-
sign analysis of the possible overlapping schemes has to be conducted or not, and the
second one is used to decide whether it is worth implementingit or not.

If we apply this methodology to our matrices product application, we have to moni-
tor the computation time, the communication time and the total execution time in or-
der to check the first criterion. Such measures are given in Table 5.1 for a 4096×4096
matrix size and different numbers of nodes.

First of all, it can be observed that the communication time just increases slightly
with the number of nodes. This is due to the fact that only the number of communica-
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Number of computation communication total exec ratio of the
nodes (P ) time (s) time (s) time (s) shortest activity (%)

2 40.852 1.417 44.186 3.21
4 20.460 1.612 23.828 6.77
8 10.240 1.622 13.606 11.92
16 4.943 1.720 8.412 20.44

Table 5.1: Computation, communication and total times in the basic parallel matrices
product forn = 4096, and potential gain of the overlapping

tions increases with the number of nodes but the global volume stays constant. This
is not the same for the computation time as the parallelism isquite efficient and there
is almost a linear decrease with the number of nodes. The total execution time shows
a slower decrease than the computation time due to the inclusion of the communica-
tions, but also to the sequential parts of the program (initialization, finalization,etc.)
that have generally near constant costs according to the problem size.

The very different benaviours of the computation and communication times imply
that the ratio of the shortest activity (the communicationsin this case) increases with
the number of nodes and reaches very significant percentagesof the total execution
time. According to these results, the pertinence of the overlapping is quite obvious for
sufficiently large numbers of nodes. Effectively, an ideal overlapping should provide
a gain of around 12% with 8 nodes and 20% with 16 nodes. Nevertheless, although
this is not observable in these experiments, it must be kept in mind that there is always
a threshold over the number of nodes beyond which the computation time becomes
smaller than the communication time and, as explained in thefirst criterion descrip-
tion, the potential overlapping gain decreases.

At this point, the decision of implementing the overlappingstill depends on the
second criteria. A short analysis of the matrices product parallel algorithm (see Al-
gorithm 1 and Figure 5.2) reveals that the communications performed at each step
concern only some input data (a strip ofA). So there is no strong constraint over
the start time of those communications and they can be done during the computations
of theC sub-matrices without involving any perturbation between the two activities.
The only interaction between them may be concurrent read accesses on theA strip,
but these types of accesses are quite efficiently managed by the current hardware and
they would imply a negligible loss of time. Moreover, with the global communication
time being smaller than the global computation time in Table5.1 (a finer monitoring
would confirm that it is also true when comparing them within each iteration of the
global loop), it seems possible in this case to obtain an almost complete overlapping
of the communications with the computations. Thus, the overlapping quality is close
to 100% and the maximal actual gains are very close to the theoretical gains obtained
in Table 5.1 (right column). So this parallel application isvery well suited to the
overlapping.

In the following paragraphs, we explore different overlapping strategies for our
benchmark application. The MPI communication library is used in our implemen-
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tations as it is currently the standard environment for parallel developments.

5.2.2 Attempting to Use Non-Blocking MPI Communications

When trying to implement overlapping in a parallel application, the first idea that
comes to mind is to use the non-blocking communications thatare available in the
MPI library. The key idea in such communication operations is that they do not block
till the communication is actually performed but they return immediately. It is a bit like
a registering system in which the communications to be done are inserted on demand
and removed as soon as they are performed. However, unlike the intuitive idea that
the management of those asynchronous communications wouldbe performed in an
additional thread (and thus in parallel with the main process), the MPI standard does
not specify any thread use for this and in general, the communications are managed
explicitly at their initial request or whenever their completion is tested (including the
waiting functions) [8]. So, in this context, the overlapping of communications and
computations may not be fully parallel and thus may be inefficient.

According to our benchmark application, the overlapping scheme we obtain is given
in Algorithm 2. As the communications are potentially performed during the compu-
tations, two versions of the localA matrix are required on each node to avoid con-
current read-write accesses. At each step, one version is used to perform the current
computations and to send the current version ofA to the next node while the other
one is used for the reception of the next version ofA from the previous node. For
convenience in managing the two versions ofA, they are placed in a global array of
size two, implying an additional dimension (in first position) in the local arrayA. The
“ . . . ” in the parameters of the call to the local computations function corresponds to
additional parameters that are not relevant here.

In this version, we use persistent communications instead of the simpleIssend
andIrecv functions because this avoids multiple creations/releases of the involved
MPI requests that would take place at each iteration of the main loop (over thestep
counter).

As mentioned above, although that overlapping scheme is operational, it may not
provide the best performances (see Section 5.2.5) due to thefact that non-blocking
communications are not multi-threaded. In the next subsection another scheme is
proposed making use of separate threads for computations and communications.

5.2.3 Synchronous MPI Communications inside Dedicated Threads

In order to avoid the problem of the asynchronous MPI communications, a second
possibility to implement the overlapping consists of usingseparate threads for the
computations and the communications.

A simple and efficient way to do that is to use the OpenMP directives in conjunction
with MPI. The principle is to place communications in one OpenOMP thread and
the local computations in another one (possibly several formulti-core nodes). In the
case of multiple computing threads, each of them performs only a part of the local
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Algorithm 2: Overlapping scheme with non-blocking MPI communications

lstlisting
// Me is the number of the current node
// NbPE corresponds to P
// SIZE corresponds to n
// LOCAL_SIZE corresponds to n

P

// Status and requests for the non-blocking MPI communications
MPI_Status StatusS[2];
MPI_Status StatusR[2];
MPI_Request RequestS[2];
MPI_Request RequestR[2];

// Creation of persistent communications if more than one node
if (NbPE > 1) {

MPI_Ssend_init(&A[0][0][0], LOCAL_SIZE * SIZE, MPI_DOUBLE, (Me+1)%NbPE, 0, ←֓

MPI_COMM_WORLD, &RequestS[0]);
MPI_Recv_init(&A[1][0][0], LOCAL_SIZE * SIZE, MPI_DOUBLE, (Me-1+NbPE)%NbPE, 0, ←֓

MPI_COMM_WORLD, &RequestR[1]);

MPI_Ssend_init(&A[1][0][0], LOCAL_SIZE * SIZE, MPI_DOUBLE, (Me+1)%NbPE, 0, ←֓

MPI_COMM_WORLD, &RequestS[1]);
MPI_Recv_init(&A[0][0][0], LOCAL_SIZE * SIZE, MPI_DOUBLE, (Me-1+NbPE)%NbPE, 0, ←֓

MPI_COMM_WORLD, &RequestR[0]);
}

// Computation and circulation loop (same as line 2 in the basic scheme)
for ( int step = 0; step < NbPE; step++) {

// Index of the local version of A to use for the computations and sending
int CurrentIdx = step%2;
// Index of the local version of A to use for the reception
int NextIdx = 1 - CurrentIdx;

// Communications
if (NbPE > 1) {

MPI_Start(&RequestR[NextIdx]);
MPI_Start(&RequestS[CurrentIdx]);

}

// Local computations
KernelLocalProduct(step, CurrentIdx, ...);

// Waiting for communications completion before going to next step
if (NbPE > 1) {

MPI_Wait(&RequestR[NextIdx], &StatusR[NextIdx]);
MPI_Wait(&RequestS[CurrentIdx], &StatusS[CurrentIdx] );

}
}

// Release of persistent communications requests
if (NbPE > 1) {

MPI_Request_free(&RequestS[0]);
MPI_Request_free(&RequestR[1]);

MPI_Request_free(&RequestS[1]);
MPI_Request_free(&RequestR[0]);

}
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computations. Similarly to the global distribution of the computations over the nodes,
the local subdivision over the computing threads is done in horizontal strips of the
square sub-matrix ofC that has to be computed at the current step of the main loop.
This decomposition is illustrated in Figure 5.6. In respectof the communications,
since they are performed in a separate thread, they are implicitly executed in parallel
with the computations and there is no need to use asynchronous communications. This
is interesting because it reduces the code complexity (no MPI requests management).

Computing

threads

P
i

P
i

A

B

C

Figure 5.6: Decomposition of the local computations for multiple computing threads

In Algorithm 3 is given the most general version where there may be multiple com-
puting threads. For each computing thread, the start and endindices (infvalinc
andsupvalexc ) of its assigned horizontal sub-strip ofC are computed. The syn-
chronousSendrecv MPI primitive is used in the communication thread.

In the two previous versions, only CPU computations are involved. However, it is
currently possible to use additional devices such as GPU to speed up the computa-
tions. In the following subsection overlapping strategiesin the context of GPU use are
presented.

5.2.4 Overlapping MPI Communications and GPU Computations

The computations performed in our benchmark application are very well suited to the
use of GPU due to their regularity. However, when using a GPU,data transfers are
required to and from the GPU to the central memory of the node.As those transfers
may influence the potential of the overlapping (whether it isincluded in it or not),
we have added this information in our monitoring presented in Table 5.2. So there
are two sub-columns for the computation time. The first one corresponds to the GPU
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Algorithm 3: Overlapping scheme with separate computing and communication
threads

lstlisting
MPI_Status status;

// Computation and circulation loop
#pragma omp parallel
{

for ( int step = 0; step < NbPE; step++) {
int idx = step % 2;
int nbthcalc = omp_get_num_threads()-1;

// Computation threads
if (omp_get_thread_num() < nbthcalc) {

// Dynamic computation of the data range of the thread
int q = LOCAL_SIZE / nbthcalc;
int r = LOCAL_SIZE % nbthcalc;
int infvalinc = q * omp_get_thread_num() + (omp_get_thread_num() < r ? ←֓

omp_get_thread_num() : r);
int supvalexc = infvalinc + q + (omp_get_thread_num() < r ? 1 : 0);
// Local computation
KernelLocalProduct(step, idx, ... , infvalinc, supvalexc );

// Input data circulation thread
} else {

if (NbPE > 1) {
MPI_Sendrecv(&A[idx][0][0], LOCAL_SIZE * SIZE, MPI_DOUBLE, (Me+1)%NbPE, step, ←֓

&A[1-idx][0][0], LOCAL_SIZE * SIZE, MPI_DOUBLE, (Me-1+NbPE)%NbPE, step, ←֓

MPI_COMM_WORLD, &status);
}

}

// Synchronization barrier: wait all computation and comm achieved
#pragma omp barrier

}
} // end of parallel region
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computation time without data transfers and the second one includes them. As a con-
sequence, there are also two sub-columns for the ratio that respectively correspond to
both variants of overlapping excluding or including the GPUdata transfers.

Number GPU computation communica- total exec ratio of the
of time (s) tion time (s) time (s) shortest activity (%)

nodes without including without including
(P ) transfers transfers transfers transfers
2 1.771 1.819 1.386 5.084 27.27 35.78
4 0.851 0.889 1.549 4.186 20.33 21.24
8 0.401 0.436 1.578 3.757 10.66 11.59
16 0.168 0.199 1.548 3.502 4.79 5.69

Table 5.2: GPU computation, communication and total times in the basic parallel ma-
trices product forn = 4096, and potential gain from the overlapping

Although the global benaviours of the computation and communication times are al-
most the same as in the initial version (see Table 5.1), the computation times are much
smaller than with CPU computations. In fact, there is a nearly constant speed up
around 25-23 (respectively without and with data transfers) between the CPU com-
putations and the GPU ones according to the number of nodes. This has a double
impact over the ratio of potential overlapping. Firstly, the total execution time is much
smaller than with CPU computations whereas the communication times are almost
the same. So, the proportion of the communications in the total time is implicitly
increased. Secondly, the computation time becomes much smaller than the communi-
cation time when the number of nodes increases. This tends todecrease the ratio of
potential overlapping, as can be seen in the ratio columns ofTable 5.2.

From those results, we can conclude that the use of GPU is veryinteresting for
absolute performances but it decreases the interest of overlapping when the number
of nodes increases. In the case of our benchmark application, the first overlapping
criterion may not be verified for 16 nodes and more. In practice, the decision to
make a deeper analysis of the overlapping interest would depend, at this point, on the
number of nodes planned to be used when exploiting the application. In the scope of
our study, we consider a possible use of the application in any configuration of nodes.
So, the analysis of the second criterion (maximal quality ofthe overlapping) is still
pertinent due to the rather significant ratios obtained for small numbers of nodes.

In respect of the overlapping quality, an essential advantage of the GPU kernel call-
ing mechanism in the context of overlapping lies in its naturally asynchronous nature.
In fact, once the data have been transferred to the device, a kernel call from the CPU
is non-blocking and allows it to perform other tasks during the kernel execution on
the GPU without recourse to any additional thread. Obviously, this benaviour is pos-
sible because the CPU and the GPU are distinct and independent devices in terms of
code execution (like any other co-processor like network orsound devices). Synchro-
nization points can be explicitly inserted in the code if necessary. In respect of the
inclusion of GPU transfers in the overlapping, the implementation is more complex
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and requires multiple threads (see Section 5.2.4.2), but itcan also be achieved quite
efficiently.

Finally, it appears that the actual quality of an overlapping of GPU computations
with communications should be high, and the second criterion is verified.

In the following two subsections, we propose different versions of overlapping GPU
computations with inter-node communications. As the parallel system used for the
experiments contains NVIDIA GPUs, the CUDA API is used in theproposed source
codes.

5.2.4.1 Natural Overlapping of GPU Computations with Blocking MPI Com-
munications

The first overlapping scheme is quite simple as it only concerns the GPU computa-
tions. It mainly consists of executing at each step of the global process, the data trans-
fer of the currentA strip to the GPU, the call of the GPU kernel and the inter-nodes
communications ofA strips. The asynchronous (non-blocking) nature of the GPU
kernel calls makes an implicit overlapping of the kernel execution and the inter-node
communications.

The corresponding overlapping scheme is given in Algorithm4. It can be seen
that there is no explicit synchronization of the GPU in this code. In fact, this is not
required in that case because a single stream is used by default on the GPU and within
one stream, only one kernel or data transfer can be executed at a time. Moreover,
GPU data transfers are implicitly synchronous. Asynchronous transfers are possible
but they imply strong constraints on the involved memory banks that significantly
increase the code complexity. So this solution is not pertinent in our context.

Finally, it appears that in our algorithm each GPU data transfer or kernel call will
be blocked while the previous one is not finished. Hence, the kernel call in the loop
will be executed only once the transfer ofA is completed, and the transfer ofA in the
next iteration will only begin once the kernel call in the previous iteration is finished.
This benaviour ensures a valid execution of the main loop of the parallel process while
preserving a simple source code.

Although this version should provide very good performances, there are still some
possible improvements according to the data transfers to the GPU. As mentioned
above, the GPU invocations being exclusive within a single stream, we have seen
that the computation kernel and the transfer ofA are sequentially scheduled. This is
exactly the same for the initial data transfer before the main loop and the transfer of
A in the first iteration. Moreover, the use of a synchronous MPIprimitive and syn-
chronous GPU transfers prevent the overlapping of the inter-node communications
with the transfer ofA at the next iteration or with the final data transfer after theloop.
So, data transfers to and from the GPU are not included in thisoverlapping scheme.
As a last step towards the complete optimization of the overlapping, a final version
including data transfers is proposed in the following subsection.
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Algorithm 4: Overlapping scheme with implicit asynchronous GPU kernel call

lstlisting
MPI_Status status;

// Transfer of the local strip of B and the node id to the GPU
gpuSetDataOnGPU();
// Computation and circulation loop
for ( int step = 0; step < NbPE; step++) {
int idx = step%2;
// Transfer of the current local strip of A from the CPU to the GPU
gpuSetAOnGPU(idx);
// Computation
gpuKernelLocalProduct(step,GPUKernelId); // Async call of the GPU kernel
// Input data circulation
if (NbPE > 1) {

MPI_Sendrecv(&A[idx][0][0], LOCAL_SIZE * SIZE, MPI_DOUBLE, (Me+1)%NbPE, step, &A ←֓

[1-idx][0][0], LOCAL_SIZE * SIZE, MPI_DOUBLE, (Me-1+NbPE)%NbPE, step, ←֓

MPI_COMM_WORLD, &status);
}

}
// Get back results from the GPU to the CPU
gpuGetResultOnCPU();

5.2.4.2 Inserting the CPU/GPU Data Transfers in the Overlapping Mechanism

As can be seen in Table 5.2, the inclusion of the GPU data transfers in the overlapping
increases its interest a little bit. Although it is not a major factor in the decision, it
may push back the interest threshold over the number of nodes. So, we propose a final
overlapping scheme including those transfers.

For this final optimization, the use of multiple streams on the GPU does not help
due to the sequential dependency between the data transfersof A and the kernel calls.
Moreover, as mentioned in the previous subsection, asynchronous GPU transfers in-
duce a more complex memory management due to specific constraints. Asynchronous
MPI primitives could also be used but, as mentioned previously, they are less efficient
than separate threads due to the blocking synchronous data transfers ofA to the GPU.
In fact, the progress of the MPI communication would not be effective during the
transfer ofA, thus preventing an actual overlap of those two activities.Moreover, the
initial and final transfers respectively to and from the GPU (before and after the main
loop) could not be overlapped in such a scheme.

A more convenient and efficient solution is to use separate threads to perform on
one hand, the GPU transfers and computations, and on the other hand, the inter-node
communications. Such a scheme, using the OpenMP directives, is presented in Algo-
rithm 5. It is quite similar to Algorithm 3 involving the use of OpenMP. However, the
number of OpenMP threads is explicitly set to two in this lastest version: one for the
GPU management and one for the communications.

There are specific GPU management rules when running multiple threads. Although
a GPU device can be used by several threads at a time, each thread can use only
one GPU device at a time. It is worth mentioning that it is verydelicate to use one
GPU device from several threads simultaneously and this should be done only when
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Algorithm 5: Overlapping scheme with multiple threads

lstlisting
MPI_Status status; // MPI asynchronous communication status

// Explicit creation of two threads (more is useless)
omp_set_num_threads(2);

// Computation and circulation loop: creation of the threads
#pragma omp parallel
{

int thId = omp_get_thread_num();

for ( int step = 0; step < NbPE; step++) {
int idx = step % 2;

switch (thId) {

// Computation thread
case 0 :

// Initialize GPU usage at step 0
if (step == 0) {

cudaSetDevice(0); // Indicates that thread 0 uses the GPU 0 (optional)
gpuSetDataOnGPU(); // Data transfer to the GPU

}
// Transfer of the current local version of A to the GPU
gpuSetAOnGPU(idx);
// Local computation
gpuKernelLocalProduct(step, GPUKernelId);
// Finalize GPU usage from thread 0 at last step
if (step == NbPE-1) {

gpuGetResultOnCPU(); // Get back the results from the CPU
}
break;

// Communication thread
case 1 :

if (NbPE > 1) {
MPI_Sendrecv(&A[idx][0][0], LOCAL_SIZE * SIZE, MPI_DOUBLE, (Me+1)%NbPE, step ←֓

, &A[1-idx][0][0], LOCAL_SIZE * SIZE, MPI_DOUBLE, (Me-1+NbPE)%NbPE, step ←֓

, MPI_COMM_WORLD, &status);
}
break;

}

// Synchronization barrier: wait for termination of both computation and ←֓
communication

#pragma omp barrier
}

} // end of parallel region: end of the threads
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necessary. Mutual exclusion can be imposed between the threads using a same GPU
by using lower level CUDA contexts. However, such exclusionmechanisms are not
useful in our scheme and are outside the scope of this chapter.

Conversely, the specification of the GPU device used by each thread managing GPU
computations would be required in the presence of several GPU devices per node. In
fact, the scheme proposed in Algorithm 5 should be extended in the presence of sev-
eral GPU devices by decomposing the local computations according to the number of
available GPU devices and by assigning one thread per GPU device to manage their
respective computations and data transfers. So, similarlyto the scheme presented in
Algorithm 3, each computing thread would manage a part of thelocally distributed
computations. The main difference is that the threads woulddo their assigned com-
putations on distinct GPU devices instead of distinct CPU cores. In this case, the
functioncudaSetDevice must be used to indicate which GPU device will execute
all the subsequent CUDA invocations made by the calling thread. This function can
be called several times by the same thread and allows it to usedifferent GPUs during
its execution. With the latest versions of CUDA (4.2), it is not necessary to explicitly
assign the GPU device to a thread when there is a single deviceinside the node. By
default, all the threads will use this device.

In our scheme, we have explicitly included this action because it is not implicit in
all versions of CUDA, but also in a pedagogic goal to help the reader to keep in mind
that the device choice may be necessary with multiple GPU devices.

Finally, this last scheme realizes a potentially complete overlapping and should ob-
tain slightly better performances than the previous one. A global performance com-
parison of the different versions is presented in Section 5.4. However, experimental
results focused on the overlapping are given and analyzed inthe next section.

5.2.5 Experimental Comparison and Analysis of the Overlapping
Schemes

We present in Table 5.3, a small synthesis of the experimental results obtained with the
four overlapping versions. The times (in seconds) reportedin this table correspond to
the duration of the main computation/communication loop. They are averages of five
executions after a first warm up execution. In fact, it is not rare to observe in a series of
executions that the first one takes more time than the following ones. This is generally
due to automatic energy-saving settings that reduce the frequencies of unused devices
(cores or GPUs). So, the first execution is penalized by the time for those previously
unused devices to get back to their maximal performance capabilities.

In connection with the first two schemes with CPU computations (Algorithms 2
and 3), several configurations are possible according to thenumber of computing
threads used. In the table are presented the configurations providing the best per-
formances. The first overlapping scheme uses a multi-threaded CPU kernel with 8
OpenMP threads and the second scheme uses 8 sequential CPU kernels in separate
OpenMP threads plus another thread for the communications.It can be seen that the
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Version Algorithm 2 Algorithm 3 Algorithm 4 Algorithm 5
Comms MPI async in MPI sync MPI sync in MPI sync

main process in 1 thread main process in 1 thread
Comps 1 CPU kernel 8 CPU kernels 1 GPU kernel 1 GPU kernel +

using 8 threads in 8 threads with async call tansfers in 1 thread
# nodes (P ) Main computation-communication loop time (s)

2 11.664 11.642 1.818 1.919
4 6.545 6.575 1.602 1.501
8 4.138 3.637 1.603 1.523
16 2.943 2.374 1.608 1.522

Table 5.3: Main loop time (s) for the four versions of overlapping withn = 4096

results between these two schemes are globally quite similar. However, the second
scheme tends to be a bit more scalable when the number of nodesincreases (up to
20% better). In fact, those two schemes have quite differentbenaviours.

As mentioned in Section 5.2.2, the overlapping of asynchronous MPI communica-
tions may be ineffective due to the lack of separation between the main process and
the communications. In some cases, the communications are actually performed se-
quentially to the computations during the waiting task. A finer monitoring of this
scheme has allowed us to observe that the total time of the main loop corresponds to
the sum of the computation time and the communication waiting time at the end of
the iterations. Moreover, the comparison with the total time of the main loop obtained
with the basic version (Algorithm 1), in the same conditions, shows that they are prac-
tically identical. So there is no actual overlapping. A potential improvement would
be to interleave asynchronous communication tests and computations as mentioned
in [8]. Nevertheless, this cannot be a generic approach as itis not always possible to
insert communication tests inside a computation kernel (typically when using a kernel
from a library like BLAS).

The results of the second scheme are a bit better. Indeed, theloop times in this
scheme are a little bit smaller than the ones in the first scheme and in the basic scheme,
with a difference increasing with the number of nodes. This tends to indicate that
there is an actual overlapping that seems to increase with the number of nodes. This
benaviour can be explained by two reasons. The former is thatfor small numbers of
nodes, the computation time is much longer than the communication time, yielding
a low potential of overlapping and thus loop times similar tothe first scheme. The
latter, already pointed out in the comments of Table 5.1, is that computation times
decrease faster than communication times when the number ofnodes increases, thus
increasing the potential of overlapping up to its maximum for a specific number of
nodes (seemingly a little beyond 16 nodes for our first two overlapping schemes).
Thus, when the number of nodes increases (up to some threshold not observable in
our experiments) the potential overlapping in the second scheme becomes more and
more important while there is still no actual overlapping inthe first scheme. This
explains the performance divergence of those two schemes.
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In connection with the last two schemes in Table 5.3 (Algorithms 4 and 5), the first
obvious result is that the use of GPUs provides an important gain in the computa-
tion time. Moreover, fine monitoring reveals that the overlapping is effective in both
versions. This is mainly due to the practically complete hardware independence of
the computation and communication activities, as they are performed on different de-
vices. The two proposed schemes present very similar globalbenaviours and rapidly
reach their performance limit with only four nodes. This comes from the fact that
in these schemes, the computation time is smaller than the communication time for
every multi-node configuration. Hence, their respective loop times are mainly gov-
erned by their communication times. Those times slightly decrease when the number
of nodes increases due to the smaller data amount to send/receive on each node. But
they rapidly reach their lower limit with just a few nodes. Itis worth noticing that con-
trary to the overlapping schemes with CPU computations (Algorithms 2 and 3), the
potential overlapping in these last two schemes (Algorithms 4 and 5) decreases when
the number of nodes increases. The slight performance difference between these two
schemes comes from the overlapping of the GPU transfers thatis effective in Algo-
rithm 5. Finally, the (bad) performance of this last scheme with two nodes is quite
unexpected. The reasons of this phenomenon are not yet clearand should be the sub-
ject of further investigations.

These first experiments have allowed us to get a performance overview of the consid-
ered overlapping schemes and to analyze their respective global benaviours. A more
detailed analysis of their efficiency is given in Section 5.4.2.

5.3 Impact of Optimization Degree in Computing Ker-
nels

Optimizing computing kernels run on each computing node is aclassic objective when
developing a HPC code. On modern architectures it means: optimize serial code, par-
allelize the code on the different cores of a node, and attempt to use an accelerator
(like GPU) when available. These optimization degrees are time consuming to de-
velop, except when an adapted optimized library already exists. However, in any case,
optimizing the computing kernel run on each node can have a great impact on dis-
tributed runs on a cluster.

5.3.1 Typical Degrees of Optimization

When running computations on modern CPU cores, we usually start designing a serial
kernel, basically optimized (calledCk0 in the following). Algorithm 1 illustrates the
design of a basically optimized serial algorithm for one CPUcore. We use a trans-
posedTB matrix in order to improve cache memory usage and to decreasethe number
of cache misses. We achieve performance of1.60 Gflops on one core of our tested
cluster (with Nehalem processors). But we can greatly increase this performance.
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5.3.1.1 Optimization of CPU Computing Kernels

Algorithm 6 adds OpenMP multithreading to split the main computation loop run
on each node (the loop over the lines of the local slice ofA as in Figure 5.6). This
is achieved very easily by adding just one compilation directive (one line) before the
main loop. As mentioned in Section 5.2.2, two copies ofA (indexed on the first dimen-
sion of the array) are used in order to avoid concurrent read-write accesses. Moreover,
we introduced some local variables (PtA andPtB) to accessA andTB elements
with just one dimensional array indexes. However, this lastoptimization had no sig-
nificant impact using thegcc compiler (that probably makes this type of optimization
by itself).

This multithreaded version (namedCk1) achieves a performance close to6.98Gflops
on one node of our testbed cluster, running 8 threads. Different experiments have
shown that best performances are achieved running 8 OpenMP threads on our Ne-
halem processor with 4 physical cores enhanced with hyperthreading. So, we have to
run one thread per logical core (i.e. 8 threads).

Algorithm 6: Multithreaded CPU kernel (Ck1)

lstlisting
// Local slice of A matrix is stored in A[2][LOCAL_SIZE][SIZE].
// Local slice of transposed B Matrix is stored in TB[LOCAL_SIZE][SIZE].
// Local slice of resulting C Matrix is stored in C[SIZE][LOCAL_SIZE].

// At step "step", the processor compute the C block starting at line:
int OffsetLigneC = ((Me+step) * LOCAL_SIZE)%SIZE;

// OpenMP parallelization of the main loop on A[idx] lines
#pragma omp parallel for
for ( int i = 0; i < LOCAL_SIZE; i++) {

double * PtA = &A[idx][i][0]; // Ptr on the current A line
for ( int j = 0; j < LOCAL_SIZE; j++) {

double * PtTB = &TB[j][0]; // Ptr on the current TB line
double accu = 0.0; // Local accumulator of a new result
// Compute a new value of the resulting C matrix
for ( int k = 0; k < SIZE; k++) {

accu += PtA[k] * PtTB[k];
}
// Store the new result in C matrix
C[i+OffsetLigneC][j] = accu;

}
}

Algorithm 7 is another version (namedCk2) that uses the matrix-matrix product
of the famous BLAS library (cblas dgemmroutine) to perform on each node the
computation of the local sub-matrix ofC. The BLAS function call requires several
parameters, specifying the storage format of theA, B andC matrices as well as their
respective line and column sizes. This library is well knownto the HPC commu-
nity (that never redevelops a matrix-matrix multiplication), and is generally supplied
by constructors or by specialized communities. We achieveda performance close to
9.81 Gflops on one core of our testbed cluster. We used the ATLAS version of the
BLAS library, but with pure sequential implementation of each routine.
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Algorithm 7: Sequential BLAS CPU kernel (Ck2)

lstlisting
// idx: index of the 2D array of A[2][LOCAL_SIZE][SIZE] to read at current step.
// OffsetLigneC: starting line of the C block computed at current step.

cblas_dgemm(CblasRowMajor, CblasNoTrans, CblasNoTrans , LOCAL_SIZE, LOCAL_SIZE, ←֓

SIZE, 1.0, &A[idx][0][0], SIZE, &B[0][0], LOCAL_SIZE, 0.0 , &C[OffsetLigneC][0], ←֓

LOCAL_SIZE);

Finally, Algorithm 8 illustrates a computing kernel still based on a BLAS library
call, but applied to a subpart of the local slice of theA matrix: processing lines in the
range[InfValInc;SupValExc[ (kernelCk3). This computing kernel is called from
an OpenMP multithreaded algorithm (see Algorithm 3). Several OpenMP threads are
run, each thread computes its[InfValInc;SupValExc[ range and calls theCk3
kernel. Experiments have pointed out that the most efficientway of using kernel
Ck3 was to run only one computing thread per physical core (and not relying on the
hyperthreading mechanism). We reached36.30 Gflops on our testbed nodes.

Algorithm 8: BLAS CPU kernel to be used in a multithreaded scheme (Ck3)

lstlisting
// idx: index of the 2D array of A[2][LOCAL_SIZE][SIZE] to read at current step.
// OffsetLigneC: starting line of the C block computed at current step.
// InfValInc: index of the first line of A[idx] processed by the thread.
// SupValExc: index of the first line of A[idx] not processed by the thread.

cblas_dgemm(CblasRowMajor, CblasNoTrans, CblasNoTrans , (SupValExc - InfValInc), ←֓

LOCAL_SIZE, SIZE, 1.0, &A[idx][InfValInc][0], SIZE, &B[0 ][0], LOCAL_SIZE, ←֓

0.0, &C[OffsetLigneC+InfValInc][0], LOCAL_SIZE);

5.3.1.2 Optimization of GPU Computing Kernels

Using a GPU allows for the achievement of higher performancewhen the compu-
tations are adapted to thevector-likearchitecture and programming model. Details
about GPU programming (using CUDA framework for NVIDIA cards) is beyond the
scope of this study. However, we aim to show that there are similarities with CPU
programming according to the optimization process of computing kernels.

Algorithm 9 shows the source code of a basic CUDA kernelGk0(top) and the source
code of this kernel call (bottom). This short code is composed of very classical op-
erations in a CUDA program. It is quite simple as it uses only theglobal memoryof
the GPU and it accesses data without fully respecting theircoalescence. Those omis-
sions may induce a performance degradation as a part of the memory bus bandwidth
of the GPU is wasted and the thread scheduling may not be optimal. We achieved a
performance of38.80Gflops on the GTX480 GPU board of each node of our testbed.

If we go a step further in the optimization process, Algorithm 10 introduces a
medium optimized GPU computing kernel (Gk1). It uses the global memory of the
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Algorithm 9: Basic GPU kernel (Gk0)

lstlisting
// Definition of the GPU computing kernel
__global__ void MatrixProductKernel_Gk0( int step)
{
int lig = blockIdx.y;
int col = threadIdx.x + blockIdx.x * BLOCK_SIZE_X_K0;
double res = 0.0;

if (col < LOCAL_SIZE) {
for ( int k = 0; k < SIZE; k++) {

res += GPU_A[lig][k] * GPU_B[k][col];
}
GPU_C[lig+(((GPU_Me+step) * LOCAL_SIZE)%SIZE)][col] = res;

}
}

lstlisting
// Call of the GPU computing kernel Gk0

// Description of a block of threads
Db.x = BLOCK_SIZE_X_K0;
Db.y = 1;
Db.z = 1;
// Description of a grid of blocks
Dg.x = LOCAL_SIZE/BLOCK_SIZE_X_K0 + (LOCAL_SIZE%BLOCK_SIZE_X_K0 ? 1 : 0);
Dg.y = LOCAL_SIZE;
Dg.z = 1;

// Run the grid of blocks of threads with Gk0
MatrixProductKernel_Gk0<<<Dg,Db>>>(step);

GPU but also itsshared memory: a fast memory used like a cache memory explic-
itly managed by the developer in the source code. In the previous GPU algorithm,
another part of this fast memory was a real cache memory entirely managed by the
GPU. Moreover, the Gk1 kernel has also coalescent data accesses that allow for a bet-
ter scheduling of GPU threads. That kernel is to be used on a two-dimensional grid
of thread blocks as presented in Algorithm 11. ThecudaFuncSetCacheConfig
function is used before the kernel call in order to increase the size of the shared mem-
ory that can be used by the kernel. This kernel source is longer and more complex
than the first one. Not all developers can write or maintain this code. But it achieves
a performance of98.00 Gflops on one node of our testbed (instead of38.80 Gflops
with GK0 !).

Finally, Algorithm 12 introduces the usage of the highly optimized cuBLAS library:
calling the routinecublasDgemm and a transposition kernel (user defined). The
call to the cuBLAS library routine is close to the call to the BLAS library routine (on
CPU), but the result is always stored incolumn majormode as in FORTRAN libraries.
Then, it is necessary to transpose the resulting matrix at the end of each step before
storing it in the entire local slice of theC matrix. This last GPU kernel is namedGk2.
Calling the cuBLAS library is more complex than calling the BLAS library on a CPU,
but it remains reasonable for GPU developers and it achievesa high performance of
154.00 Gflops on one node of our testbed.
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Algorithm 10: GPU kernel using shared memory (Gk1)

lstlisting
__global__ void MatrixProductKernel_Gk1( int step)
{

__shared__ double sh_A[BLOCK_SIZE_Y_K1][BLOCK_SIZE_X_K1]; // Local "cache" of A
__shared__ double sh_B[BLOCK_SIZE_X_K1][BLOCK_SIZE_X_K1]; // Local "cache" of B
double res = 0.0; // Local result storage
int ligC = threadIdx.y + blockIdx.y * BLOCK_SIZE_Y_K1; // Coordinates of the C
int colC = threadIdx.x + blockIdx.x * BLOCK_SIZE_X_K1; // elt computed
int colA = threadIdx.x; // Initial indexes of
int ligB = threadIdx.y; // A column and B line

// For each step: process BLOCK_SIZE_X_K1 elt of the required A line and B column
for ( int step = 0; step < SIZE/BLOCK_SIZE_X_K1; step++) {
// Load A data into the shared sh_A array
if (ligC < LOCAL_SIZE) {

sh_A[threadIdx.y][threadIdx.x] = GPU_A[ligC][colA];
colA += BLOCK_SIZE_X_K1;

}
// Load B data into the shared sb_B array
if (colC < LOCAL_SIZE) {

int ligShB = threadIdx.y;
for ( int sstep = 0; sstep < BLOCK_SIZE_X_K1/BLOCK_SIZE_Y_K1; sstep ++) {

sh_B[ligShB][threadIdx.x] = GPU_B[ligB][colC];
ligB += BLOCK_SIZE_Y_K1;
ligShB += BLOCK_SIZE_Y_K1;

}
}
// Wait for all threads having updated the A and B "cache memories"
__syncthreads();
// Update C value using A and B data uploaded into the shared memory
if (ligC < LOCAL_SIZE && colC < LOCAL_SIZE)

for ( int k = 0; k < BLOCK_SIZE_X_K1; k++)
res += sh_A[threadIdx.y][k] * sh_B[k][threadIdx.x];

// Wait for all threads having finished to use current values in the A and B ←֓
caches

__syncthreads();
}
// Last step: process the remaining elts of the required A line and B colum
if (SIZE % BLOCK_SIZE_X_K1 != 0) {
// Cache a last value of A
if (ligC < LOCAL_SIZE && colA < SIZE)

sh_A[threadIdx.y][threadIdx.x] = GPU_A[ligC][colA];
// Cache some last values of B
if (colC < LOCAL_SIZE) {

int ligShB = threadIdx.y;
for ( int sstep = 0; sstep < BLOCK_SIZE_X_K1/BLOCK_SIZE_Y_K1 && ligB < SIZE; ←֓

sstep++) {
sh_B[ligShB][threadIdx.x] = GPU_B[ligB][colC];
ligB += BLOCK_SIZE_Y_K1;
ligShB += BLOCK_SIZE_Y_K1;

}
}
// Wait for all threads having updated the A and B "cache memories"
__syncthreads();
// Update C value with the last A and B values uploaded in the shared memory
if (ligC < LOCAL_SIZE && colC < LOCAL_SIZE)

for ( int k = 0; k < SIZE % BLOCK_SIZE_X_K1; k++)
res += sh_A[threadIdx.y][k] * sh_B[k][threadIdx.x];

}
// Store the final computed value into the C matrix variable
if (ligC < LOCAL_SIZE && colC < LOCAL_SIZE)

GPU_C[ligC][colC] = res;
}
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Algorithm 11: Gk1 GPU kernel call

lstlisting
// Description of a block of threads
Db.x = BLOCK_SIZE_X_K1;
Db.y = BLOCK_SIZE_Y_K1;
Db.z = 1;
// Description of a grid of blocks
Dg.x = LOCAL_SIZE/BLOCK_SIZE_X_K1 + (LOCAL_SIZE%BLOCK_SIZE_X_K1 ? 1 : 0);
Dg.y = LOCAL_SIZE/BLOCK_SIZE_Y_K1 + (LOCAL_SIZE%BLOCK_SIZE_Y_K1 ? 1 : 0);
Dg.z = 1;
// Maximize the size of the GPU shared memory for the Gk1 kernel
cudaFuncSetCacheConfig(MatrixProductKernel_Gk1, cuda FuncCachePreferShared);
// Run the grid of blocks of threads with the required kernel
MatrixProductKernel_Gk1<<<Dg,Db>>>(step);

Algorithm 12: cuBLAS based GPU kernel (Gk2)

lstlisting
// Compute AxB calling cuBLAS library
cublasDgemm(handle, CUBLAS_OP_T, CUBLAS_OP_T, LOCAL_SI ZE, LOCAL_SIZE, SIZE, &alpha, ←֓

Adr_GPU_A, SIZE, Adr_GPU_B, LOCAL_SIZE, &beta, Adr_GPU_R , LOCAL_SIZE);
// Transpose Column Major result into a part of the C matrix
// Description of a block of threads
DbT.x = BLOCK_SIZE_XY_TK0;
DbT.y = BLOCK_SIZE_XY_TK0;
DbT.z = 1;
// Description of a grid of blocks
DgT.x = LOCAL_SIZE/BLOCK_SIZE_XY_TK0 + (LOCAL_SIZE%BLOCK_SIZE_XY_TK0 ? 1 : 0);
DgT.y = LOCAL_SIZE/BLOCK_SIZE_XY_TK0 + (LOCAL_SIZE%BLOCK_SIZE_XY_TK0 ? 1 : 0);
DgT.z = 1;
// Run the transposition kernel on the grid of blocks of threads
TransposeKernel_v0<<<DgT,DbT>>>(Adr_GPU_R, Adr_GPU_C + ((step+Me)%NbPE) * ←֓

LOCAL_SIZE * LOCAL_SIZE, LOCAL_SIZE, LOCAL_SIZE);
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5.3.2 Experimental Highlighting of the Kernel Optimization

CPU Ck0 (basic Ck1 (OpenMP Ck2 (Atlas/BLAS Ck3 (Atlas/BLAS
kernel optimization) multithreading) monothreaded) + OpenMP
version multithreading)
Gflops 1.60 6.98 9.81 36.30
Speedup 1.0 4.4 6.1 22.7

Table 5.4: Performances of the different CPU kernels

In Table 5.4 are presented the CPU kernels performances achieved on one node of
our testbed, together with their respective speedups according to the first basic version
(Ck0). A regular and significant improvement of the performance with the increase
of the optimization degree can be seen. Moreover, we can observe that the C source
code of the different CPU versions remainsreasonably simple. Using the BLAS li-
brary is easy. So, it appears really interesting to develop these improvements on CPU,
and specially the last one, calling a BLAS implementation and adding OpenMP mul-
tithreading. Theoretically, the Atlas implementation of the BLAS can be compiled
in a multithreaded way in order to internally use the available cores on each node.
However, our version of Atlas library was not multithreaded, and we had to explicitly
manage multithreading via OpenMP.

GPU kernel version Gk0 (basic) Gk1 (medium optimized) Gk2 (cuBLAS)
Gflops 38.80 98.00 154.00
Speedup vs GPU-basic 1.0 2.5 4.0
Speedup vs CPU-optim 1.1 2.7 4.2
Speedup vs CPU-basic 24.3 61.3 96.3

Table 5.5: Performances of the different GPU kernels

In Table 5.5 the performances obtained with the different GPU kernels are given.
The optimized cuBLAS based kernel (Gk2) is 4.0 times faster than the basic GPU ker-
nel,4.2 times faster than the most optimized CPU kernel (based on theBLAS library
and OpenMP multithreading), and96.3 times faster than the basic and sequential CPU
kernel. The final performance improvement of our matrix product kernel on one node
is significant. However, it requires the learning of CUDA programming in order to use
GPU accelerators. Moreover, if the problem to solve is more complex or more original
than a simple dense matrix product, it is probable that no highly optimized libraries
(like BLAS and cuBLAS) will be available. Then the developerwill have to design
and implement some highly optimized kernels by himself. This type of work requires
a lot of expertise and a long development time, independently of the distribution on
several computing nodes.

In the next section we investigate the impact of kernel optimization over the perfor-
mance of a distributed version on a cluster, and we attempt toidentify the right couples
(kernel optimization, parallel scheme optimization).
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5.3.3 Decision Chain for Optimization of Computing Kernels

A computing kernel optimization process can lead to long andexpensive development.
To enter this kind of process is an important decision. A chain of decision criteria has
to be considered.

As explained in Section 5.2.1, the first criterion is the ratio of the considered kernel
in the entire application. It is not very useful to spend great effort on optimization in a
kernel that takes only1% or 2% of the total application time. On the other hand, if the
kernel represents a significant part of the total execution time, then we have to study
the criteria introduced in the following paragraphs.

5.3.3.1 Technical Criterion

When considering a computing kernel, the first criterion to evaluate before entering
a new optimization development step is whether its performance can be theoretically
optimized or not. A possible approach is based on counting the computing operations
and the memory accesses achieved by the kernel. This approach uses the concept of
arithmetic intensityintroduced by NVIDIA in [15]. We partially studied this approach
in [13] and more deeply in a collaboration with the EDF company [12].

The main steps are:

1. Counting the number of floating point operations achievedby the kernel:nops.

2. Counting the number of memory accesses achieved by the kernel. However, we
need a model of the architecture, or at least some hypothesisabout the hierarchy
and speeds of the different memories. For example, we may count only accesses
to the main memory, not to cache memories. So, we need to make assumptions
about the cache size and cache management. Finally, we obtain a number of
accesses in function of the architecture:na,archi.

3. Computing thearithmetic intensity: ia = nops/na,archi, the average number of
operations achieved per memory access.

4. Comparing this value to thecritic arithmetic intensity: ic, defined as the ratio
between the processor speed (flops) and the memory access speed (bandwidth).

5. Deducing the theoretical minimal execution time:

• If ia > ic, the kernel iscpu-bound: it is limited by the computing speed of
the processor, and the theoretical minimal execution time is:
tideal = nops/(processor speed).

• If ia < ic, the kernel ismemory-bound: it is limited by the memory band-
with, and the theoretical minimal execution time is:
tideal = na,archi/(memory bandwidth).
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When the experimental execution time is sufficiently largerthan the theoretical min-
imal time, then it is interesting to attempt to optimize the kernel code. Moreover, it is
sometimes possible to design new algorithms with an arithmetic intensity (ia) closer
to the critical one (ic), in order to better exploit both computing and memory access
capabilities of the processor.

5.3.3.2 Required Expertise Criterion

The first steps of the CPU kernel optimization arestandardand require basic com-
puter science knowledge. The usual optimization includes data structure and data
access design in order to read and/or write contiguous memory locations and to avoid
cache misses. Then, a simple access to multithreading via libraries like OpenMP is
possible for loops performing independent iterations. A software developer with basic
knowledge about processor architectures and multithreading libraries can achieve this
degree of serial optimization and multithreading. However, the next steps are much
more complex, and very few developers are able to design optimized code like BLAS
libraries. Moreover, using multithreading leads to particular data storage and data
access optimization, requiring specific knowledge.

When using GPUs, the required level of expertise increases quickly. Designing al-
gorithms and codes withcoalescentmemory accesses is the basic training of a CUDA
developer, and is usually well understood. But, developingexplicit caching algorithms
to exploit the fastshared memoriesof the NVIDIA GPUs requires a higher level of
expertise. Many developers will never reach this second level of expertise. However,
GPUs do not (yet) support a complex OS with various tasks. It is possible to monitor
and to control what happens on a GPU, and finally to acquire a very high level of
expertise and to achieve very optimized kernels.

In any case, achieving computing kernel optimization requires an adapted level of
expertise, that takes time to acquire. So, an important decision criterion for starting
an optimization process or not, is the availability (and thecost) of this expertise inside
the development team or the company. Obviously, when an existing highly optimized
library can be used in the kernel, like BLAS in our benchmark application, the right
solution is to learn the usage of this library and to adapt thekernel to use it. It often
allows the achievement of high performance with limited extra development efforts
and a low expertise level.

5.3.3.3 Use Context Criterion

When the kernel code is used in a multi-node parallel context, the kernel time will be
often compared to the communication time. When an overlapping of those two ac-
tivities is possible, an efficient strategy is to reduce computation and communication
times as much as possible so that they become of the same order. This maximizes the
potential overlapping. However, it is shown in Section 5.4.2 that it is sometimes effi-
cient to have communication times greater than computationtimes, in order to get an
experimental gain close to the expected one (deduced from the potential overlapping).



140 Patterns for Parallel Programming on GPUs

Some software is designed for a long term exploitation and for intensive usage. In
such cases, the development time remains smaller than the sum of the execution times
(Tdev <<

∑
(Texec)) of the application during its lifetime. So, increasing thedevelop-

ment time in order to decrease each execution time a bit may have a strong attraction.
Nevertheless, if the application has a short life cycle, or if it is to be used rarely, the
optimization effort may be more time consuming than the sum of the gained times in
all the executions of the optimized version during its lifetime.

5.3.3.4 Complete Decision Chain

Finally, before investing into optimization effort of somecomputation kernels, one has
to take care of:

(1) the ratio of this kernel in the total execution time of theapplication,

(2) the distance between the performance obtained and the theoretical performance of
this kernel with the considered parallel architecture,

(3) the expertise level of the available developers or the existence of a suitable highly
optimized library,

(4) the opportunity to overlap kernel computations with inter-node communications
(in a multi-node architecture), and

(5) the estimated total amount of execution times of the application during its lifetime
compared to the extra development time required.

5.4 Global Experiments and Analysis

The hardware and software components of the parallel systemthat has been used to
perform the following experiments are detailed in Section 5.1.3.

5.4.1 Experimentation Strategy

The different versions of the benchmark application have been tested on different num-
bers of nodes of the cluster and with different computing variants (variable number of
computing threads when relevant). As it is not reasonable (and not fully pertinent) to
present the entire set of results obtained from those experiments in this chapter, two
levels of selection have been applied. The first one concernsthe application variants
(overlapping scheme and computing kernel). Hence, Algorithm 2 is not selected as
it has already been shown in Section 5.2.5 that this scheme isnot efficient at all. The
second selection level is related to the runtime configurations (number of computing
threads). For each selected variant only the runtime configuration that has obtained
the best performance is retained.

As mentioned in Section 5.2.5, each result is the average of five consecutive execu-
tions after an initial warm-up. Moreover, as a first analysisof the overlapping schemes
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Figure 5.7: Performance curves of different CPU computing kernels with or without
overlapping on a multi-core CPU cluster

already has been presented in that previous section, the current section is more ded-
icated to the analysis of the actual efficiency of the overlapping (according to the
expected performance) as well as the efficiency of the computing kernels.

5.4.2 Experimental Results

For clarity’s sake, the analysis is decomposed into two parts according to the type of
computing kernel.

5.4.2.1 Performance on Multicore CPU Cluster

In Figure 5.7 are shown the performance curves achieved, with 1 to 16 nodes, by our
different CPU kernels, with no overlapping or with the overlapping scheme in Algo-
rithm 3. The two bottom curves correspond to the performanceachieved with theCk0
CPU kernel that includes only some basic serial optimization (see Section 5.1.2 and
algorithm 1) and that uses only one CPU core (no multithreading inside this kernel).

In the Ck0 CPU kernel with no overlapping (Ck0-synccurve), the communication
time ranges from3.2% up to20.4% of the entire application time respectively from
2 up to 16 nodes. Moreover, it is3.4% up to 25.8% of the computation loop time.
This computing kernel has limited performance, but when thenumber of nodes in-
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creases it becomes interesting to overlap communications with computations to save
up to25.8% of the computation loop time (see Section 5.2.1). Then we have imple-
mented the overlapping scheme in Algorithm 3, using an explicit OpenMP thread to
achieve MPI communications, and another thread to run the computation kernel (see
Section 5.2.3). Finally, the performance curveCk0-overlapstays quite similar toCk0-
syncbut shows a small improvement on16 nodes.

We have followed a very similar approach with theCk1CPU kernel, that is a multi-
threaded version of the previous one. CurvesCk1-syncandCk1-overlaprespectively
show the performance achieved without and with overlapping. It has to be noticed that
due to technical constraints in OpenMP, the actual implementation of theCk1-overlap
is Algorithm 3. However, these two schemes have the same semantics that consist of
having several computing threads and one communication thread. The analysis of the
curves shows that running8 threads on the4 hyperthreaded cores of our Nehalem pro-
cessors has led to a significant decrease in the computation time. The communication
time remains unchanged, and from2 to 16 nodes it ranges from12.1% to 35.1% of the
application time, and from14.1% to 55.8% of the computation loop time. In this con-
text, the overlapping of computations with communicationsis highly attractive. With
8 and16 nodes, the performance increase is significant and justifiesthe development
effort of the overlapping.

The next curves concern the usage of a BLAS library kernel (Atlas implementa-
tion), identified as theCk2CPU kernel in Figure 5.7. This is a sequential kernel using
only one core, but with a very high degree of optimization. With this kernel, the
communication time ranges from13.5% to 37.1% of the application time, and from
16.5% to 62.6% of the computation loop time. The performance increase on theCk2-
overlapcurve, compared to theCk2-synccurve, starts as soon as2 nodes are used and
becomes surprisingly strong with16 nodes. In fact, when using16 nodes with this
computing kernel, communications become longer than computations (in the compu-
tation loop): Tcomm = 1.7 × Tcomput. Then, the loop computation time appears to
be very close to the communication time: the time saved by theoverlap is93% of
the expected one. On8 nodes, the communication time is less than the computation
time (Tcomm = 0.86 × Tcomput), and the time saved by the overlap is only22% of the
expected one. It seems that overlapping inter-node communications with node com-
putations is better when the computation time is smaller than the communication time.
However, in this case the performance is bounded by the communications. Usually,
designers of parallel codes try to get communications shorter than computations. See
Section 5.4.3.1 for a detailed analysis of this phenomenon.

The last performance curves correspond to the variant of theapplication with the
same sequential BLAS kernel, but called in parallel from different threads in order to
use the available cores of the CPU. Parallel runs of the BLAS kernel have been tested
with 2, 3, on up to12 threads. With no overlapping, the number of threads providing
the best performance is constant and corresponds to4. With the overlapping, the best
number of threads varies with the number of nodes (and so withthe size of the sub-
problem run on each node). With2, 4 and8 nodes the best performance is obtained
with 8 computing threads (and one communication thread), while with 16 nodes only
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Figure 5.8: Performance of the basic
Gk0 kernel on a GPU clus-
ter

Figure 5.9: Performance of the opti-
mized Gk1 kernel on a
GPU cluster

Figure 5.10: Performance of the highly
optimized Gk2 kernel on a
GPU cluster

4 computing nodes (and one communication thread) are necessary. These results are
depicted by theCk3-overlapcurve. Compared to theCk3-synccurve, the improvement
in the overlapping is visible and significant from2 to 16 nodes. In this context, the
communication time is greater than the computation time with 4, 8 and 16 nodes.
However, the overlap is close to100% of its expected value only with16 nodes when
Tcomm = 5.5× Tcomput.

5.4.2.2 Performance on GPU Cluster

We have experimented each of our three GPU kernels with threeparallel variants: with
no overlapping (Algorithm 1 with a GPU kernel), with a nativeoverlapping mecha-
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nism (Algorithm 4), and with an overlapping including the CPU/GPU data transfers
(Algorithm 5). In Figure 5.8 are given the three performancecurves of theGk0kernel,
a basic GPU kernel not using the fastshared memoriesof the GPU but using only
its global memory(and some registers). The bottom curve illustrates the performance
of the version with no overlap of the inter-node communications, GPU computations
and data transfers between CPUs and GPUs. We have enforced synchronization of
the GPU kernel so that these operations do not overlap. From1 to 2 nodes the perfor-
mance increase is poor, and is stronger from2 to 16 nodes. Using2 nodes doubles the
computing power, but inserting inter-node communicationsis a great penalty that seri-
ously limits the impact of a second GPU. When increasing the number of nodes from
2 to 16, the communication time increases very slightly (from1.39s to 1.58s) while
the computing power increases strongly. So the performancecurve increases signifi-
cantly up to16 nodes. The upper performance curves correspond to the overlapping
modes. The penalty of inter-node communications is not sensitive from 1 to 2 nodes,
but on4 nodes the computation time (on the GPU) is less than the inter-node com-
munication time. So the overlapped execution time is limited by the communication
time that remains approximately constant, and the performance reaches its limit. Our
gigabit Ethernet interconnection network appears insufficient to support GPU nodes:
they require and produce data faster than this network can route.

The highest curve shows the performance of the version overlapping inter-node com-
munications with both GPU computations and CPU/GPU data transfers. This code is
more complex to develop (see Section 5.2.4.2 and Algorithm 5), but it achieves slightly
better performances from4 to 16 nodes than the native overlapping version. However,
performances are a little bit weaker on2 nodes. As already mention in Section 5.2.5,
this phenomenon is still under investigations.

The results obtained with theGk1GPU kernel are given in Figure 5.9. This kernel
code is more complex and uses the fastshared memoriesof the GPU like a cache
memory explicitly managed by the developer at application level. With or without
any overlap mechanism, we can observe that best performanceis obtained on only1
computing node. Performance of this computing kernel on onenode is approximately
three times greater than performance of theGk0 kernel, and computation times are
smaller than communication times. So the communication times of our gigabit Eth-
ernet network always compensate the computation times won by using several nodes,
and the total execution time does not decrease. This phenomenon is more visible
with the third GPU kernel (Gk2), using the highly optimized cuBLAS library. Fig-
ure 5.10 shows very high performance on only1 node (close to154Gflops), and a
strong performance decrease when using more nodes, even with a total overlap of the
communications with both computations and data transfers.
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5.4.3 Discussion

5.4.3.1 Assessment of Overlapping Strategy on CPU Clusters

Finally, overlapping communications with computations ona multicore CPU clus-
ter is successful with the strategy based on an explicit thread running and managing
the MPI communications (see Section 5.2.3). However, it is not obvious to reach the
ideal execution time: usually we observeToverlap > max(Tcomput, Tcomm). Consid-
ering that in the ideal caseT ideal

saved = (Tcomput + Tcomm) − max(Tcomput, Tcomm) =
min(Tcomput, Tcomm), detailed experiments on our cluster have shown that:

• when0 < Tcomm

Tcomput
< 0.95, we get:Tsaved < 0.30× T ideal

saved,

• when1.0 < Tcomm

Tcomput
, we can achieve:Tsaved = T ideal

saved.

So, although obtainingTsaved = T ideal
saved seems attractive, usually it providesinefficient

results as the communication times are longer than the computation ones. Even if
the overlapping strategy can lead to achieving100% of the expected gain, this gain
is strongly limited by the small overlapping potential. Moreover, it may require a lot
of resources for a limited extra-speedup. For example, theCk3-overlapperformance
curve increases up to16 nodes, but the minor increase from8 to 16 nodes does not
justify doubling the cluster size. It is important to know how to track and achieve
overlapping to improve the performance, but not to track it at all costs.

5.4.3.2 Assessment of Overlapping Strategy on GPU Clusters

Our experiments show that an overlapping mechanism can leadto significant perfor-
mance increase on a GPU cluster. We can evaluate the efficiency of the two overlap-
ping strategies that have been implemented. The synchronous implementation of the
computation loop can be modeled with:

T sync
loop = Tcomp + Ttrans + Tcomm

the execution time of the native overlap strategy is:

T native−ovlp
loop = Ttrans +max(Tcomp, Tcomm)

and the execution time of the more complex and total overlap strategy is given by:

T total−ovlp
loop = max(Tcomp, Ttrans + Tcomm)

As on the CPU cluster, we measuredTcomp, Ttrans andTcomm with the (strongly)
synchronous version (no overlapping). Then, the ideal saved times that are expected
for each overlapping strategy are computed and compared to the actual saved times
obtained in the experiments. Finally, the ratiosTcomm/Tcomp (or Tcomm/(Tcomp +
Ttrans)) andTsaved/T

ideal
saved are deduced. We obtained very different results from the

ones with the CPU kernels. With theGk0kernel:
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• with the native overlapping strategy we obtain:
0.75 < Tcomm/Tcomp < 8.4, and0.84 < Tsaved/T

ideal
saved < 1.02

• with the total overlapping strategy we obtain:
0.75 < Tcomm/(Tcomp + Ttrans) < 7.8, and0.92 < Tsaved/T

ideal
saved < 1.12

Compared to the CPU kernel results, we have a greater ratioTcomm/Tcomp due to the
very high speed of the GPUs. Therefore communication times quickly exceed compu-
tation times (even when adding the transfer times). Moreover, the overlapping being
very efficient in those contexts, the major part of the expected gain of the overlap-
ping is actually achieved: at least84% with the basic and native overlapping strategy.
When using the total overlapping strategy, we have measureda gain of time greater
than the expected one (110% of the expected time). Obviously, such results are not
coherent with the theory. However, they can be explained (atleast partially) by the
additional GPU synchronization that had to be used in the basic version with no over-
lapping in order to force the CPU to wait for the GPU kernel termination. We remind
the reader that by default a GPU kernel call is non-blocking.Such synchronization
induces additional costs that may lead to measuring longer computation times than
the real ones.

Anyway, independently of the problem of the exact correspondence of the monitored
activities between two application variants, it appears that the native overlapping strat-
egy on a GPU cluster is very easy to deploy, the total overlapping strategy is not so
complex (see Section 5.2.4), and both are successful. We save almost90% of the ex-
pected time with aTcomm/Tcomp ratio around1, and almost100% with a higher ratio.
However, as we claimed for CPU clusters, it is not interesting to run parallel programs
with strongly dominant communication times. In Figure 5.8 astrong improvement
when using overlapping mechanisms can be observed, but there is no global improve-
ment when using more than4 nodes with these mechanisms (using more resources is
useless).

Analyses of theTcomm/Tcomp andTsaved/T
ideal
saved ratio forGk1andGk2kernels would

lead to similar results to theGk0ones. However, they have a limited interest. As ex-
plained previously, our interconnection network is not fast enough to use these kernels.
A network upgrade would be required (towards Infiniband for example), or the use of
benchmark requiring many more computations.

5.4.3.3 Looking for the Most Interesting Solution

Due to the limited capacity of our gigabit Ethernet interconnection network, the num-
ber of nodes providing the best performance of our benchmarkproblem decreases
when the speed of the computing kernel increases. Table 5.6 summarizes the configu-
rations most suited to the different kernels. With all the CPU kernels, it is interesting
to use the16 nodes of the cluster and to implement a multithreaded overlapping of
computations with communications. However, when running the fastest CPU kernel,
the performance increase from8 to 16 nodes is small.
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Kernel Most suited parallel scheme Nodes Gflops
Ck0 Overlapping (1 comp. thread and 1 comm. thread) 16 22
Ck1 Overlapping (8 comp. thread and 1 comm. thread) 16 58
Ck2 Overlapping (1 comp. thread and 1 comm. thread) 16 84
Ck3 Overlapping (n comp. thread and 1 comm. thread) 16 87
Gk0 Total overlapping (comm.vscomp. + trans.) 4 92
Gk1 Mono-node exec. (no comm.) 1 98
Gk2 Mono-node exec. (no comm.) 1 154

Table 5.6: Configurations providing the best performance for each computing kernel

When running GPU kernels, the most interesting number of nodes decreases. With
the basicGk0GPU kernel (easy to design) it is better to use only4 nodes, and to imple-
ment a total overlapping of communications with both computations and CPU/GPU
data transfers. With faster GPU kernels, it is better to use only 1 node to run this
benchmark problem. Then, no inter-node communication is required and it is not
necessary to implement any overlapping mechanism.

Obviously, it could be interesting to run a larger benchmark, with bigger matrices.
But problems to solve are not alwaysinfinitely scalable. Sometimes we have to solve
a large but finite problem. Then, we can look for the fastest solution, with limited
development time and with limited computing resources. If some adapted high per-
formance libraries are available (like BLAS and cuBLAS in our example) it is highly
recommended to (test and) use such libraries. When some problem-specific high per-
formance kernels have to be developed, a pertinent trade-off between the development
time (and cost) and the gain in execution time must be found. For example, we can
track to:

• decrease the execution time under a fixed threshold, no more, no less,

• minimize the sum:Tdev +
∑

(Texec)

When spending a lot of time (and money) to develop a very fast computing kernel, it
is possible to exceed the capacities of the available interconnection network. Then, the
application performance will be limited to the speed achieved with only a few nodes,
or even only one node (if the problem size fits the memory size on one node). Then,
it may be more interesting to spend less time developing the computing kernel, and
to spend some time overlapping computations with communications in the parallel
program. Another possibility is to decrease development time and cost, and to buy a
better interconnection network. The most suited strategy depends on each use-case.

5.5 Conclusion

Due to the high hardware complexity of current processors, code optimization is
mandatory for high performance computing codes. But an optimization process is,
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in some sense, an endless process that may lead to important extra development costs
for only small performance improvements. A methodology is required to avoid this
type of pitfall.

In this chapter we have investigated the optimization process of a toy application
(a dense matrix product) on a multicore CPU/GPU cluster. Throughout this process,
some methodologies have been proposed to develop optimizedcomputing kernels and
efficient overlapping of communications with computations, and to identify the most
interesting configurations and deployments on CPU or GPU clusters. Following these
methodologies, different possible degrees of optimization have been presented and
several series of criteria have been proposed to help developers decide up to which
degree of optimization the development effort has to be led.

Our study shows that even on a basic test application, a significant increase in the
code complexity (especially in GPU kernels) can be observedwith the increase of the
optimization degree, requiring more expertise to develop and maintain and leading to
longer development times.

The variants of the application obtained have been fully benchmarked with differ-
ent runtime parameters (when pertinent) and different configurations of the test plat-
form. Those benchmarks have pointed out that the highest optimization degrees may
sometimes be useless as they bring no visible gain. Moreover, the experiments have
also shown that a strong limitation that quickly appears with optimized codes comes
from the interconnection network. In fact, current classical networks such as Gigabit
Ethernet are not suited to the interconnection of powerful nodes running optimized
computing kernels.

In the near future, we plan to achieve complementary benchmarks with different
problem sizes and with different clusters, in order to confirm the generality of our
analysis and methodology. Moreover, we aim at studying other overlapping schemes
as well as CPU kernels using vector units (like SSE or AVX ones).
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H. Hellwagner, (Editors), “Euro-Par 2003 Conference”, Lecture Notes in Com-
puter Science, 2790, 844–849, Springer, 2003. doi:10.1007/978-3-540-45209-
6 115



Parallel Programming of Homogeneous or Hybrid Clusters 149

[5] L.D. de Cerio, M. Valero-Garcı́a, A. González, “Overlapping Communication
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