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Abstract. InterCell is an open and operational software suite for im-
plementation, code generation and interactive simulation of fine grained
parallel computational models. This article describes the software archi-
tecture, some use cases from physics and cortical networks as well as first
performance measurements.
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1 Introduction

The goal of the InterCell project is to help non-experts in parallel computing to use
large scale parallel computers when developing models for physical phenomena,
especially when these models have to be evaluated at large scale. To achieve
this goal a software suite has been developed in order to allow rapid design
and implementation of fine grained parallel computing models on coarse grained
parallel architectures, e.g clusters or mainframes. The InterCell development cycle
typically has several stages:

(1) rapid design of a mathematical model,
(2) automatic implementation of a fine grained parallel simulator,
(3) parallel execution of large scale interactive simulations, and
(4) large scale prototyping from the very beginning of model design.

Fine grained models of computation are widely adapted in different applica-
tion domains. For our project this concerns two of these domains, namely the
modeling of physical phenomena that have some notion of ‘locality’ (spatial or
timely) and the modeling and development of neuromimetic networks [7]. But
most likely InterCell could be useful for other domains as well.

Fig. 1 introduces the InterCell software architecture. At top level users de-
scribe their problems with application domain tools, such as a PDE solver or
a cortical inspired neural network simulator. These high level tools generate
fine grained parallel simulators, using a C++ library named Booz5. This library
5 http://ims.metz.supelec.fr/spip.php?rubrique27
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Fig. 1. Global architecture of our interactive problem modeler and PDE solver on large
parallel and distributed computers

�
#Poisson ’ s equat ion f o r semiconductor dev i c e s
eq1=(lmbda∗nlap ( phi (x , y ) , r , dr) ==

ni ∗ ( exp ( phi (x , y )) − exp(−phi (x , y )) ) − dop (x , y ) ) . s ub s t i t u t e ( x=0,y=0)

#Newman con t i d i on s on one border
anp=(lmbda∗nd2 ( phi (x , y ) , y , dy) ==

ni ∗ ( exp ( phi (x , y )) − exp(−phi (x , y )) ) − dop (x , y ) ) . s ub s t i t u t e ( x=0,y=0)� �
Fig. 2. SAGE file (extract) specifying the electrostatic potential of a 2D P-N junction.



ensures the interactive control of the simulations and in turn uses the parXXL

library6. With that, it efficiently maps the fine grained computations on coarse
grained parallel architectures. The parXXL runtime hides the underlying parallel
or distributed hardware. The final software has two parts: a parallel and interac-
tive server that handles the actual computations, and a set of easy-to-use control
and visualization clients.

2 Fine grained parallel computations

Fine grained computations that act on statically structured data (generally ma-
trices) are nowadays well mastered and can be parallelized on coarse grained
architectures (typically multicore clusters) with good results.

The case focused here is the computation on unstructured data for which the
structure may even change occasionally and where the compute function that
has to be executed may differ for each data point. Here an efficient mapping of
computations to processors is not straightforward and good efficiency is generally
difficult to achieve. parXXL provides a framework that facilitates programming
under such constraints and draws good performances out of nowadays platforms.

The parXXL framework, see [5], includes several software layers, as shown in
Fig. 1. Important for this project here are the following.

par::cell: a set of functionalities and a programming model to design and
implement fine grained computations in the paradigm of so-called cellular
computation. This layer allows to dynamically create and connect cells to
establish cellular networks that are executed cyclically. When created, each
cell is associated to four cell behavior functions: a function that is executed
in each compute cycle, a query function that can be used to capture the state
of the cell, a constructor and a destructor. A network of cells can easily be
controlled by a sequential program, using missions, to create cells, execute
one compute cycle, or extract data from the cells.

par::mem: an abstraction layer for handling large chunks of data. These allow
for an efficient handling of large tables that are allocated on the heap or inside
files and that can be resized dynamically. Technically, such a chunk may
refer to memory on the heap (allocated with malloc), in shared segments
(allocated through shm open) or in files.
For the par::cell layer, it allows to group the cell data and output and
access them in order or through hashed indices.

par::cntrl: handles the basic communication functionalities. It abstracts from
the underlying runtime, currently MPI or POSIX threads. In particular im-
portant for this project has been the transfer family of functions that
implements a all to all v communication (used when each parXXL process
needs to exchange different data with all other processes). In combination
with the resizability of the mem::chunk, transfer dispenses to specify com-
munication sizes and to allocate buffers beforehand.

6 http://parxxl.gforge.inria.fr/doxymentation/
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For the par::cell layer, these functions are mainly useful to implement cell
communications, cell network creation and update.

par::bench: is used to instrument the library and to collect various performance
data. In particular it registers the number of communications and their size,
wall-clock and CPU times.

All these features are the foundations of parXXL, and have already been in-
troduced in [5] and [4]. However, we have improved parXXL to support more
asynchronous execution of cell networks, to easily collect and save results of
large cell networks, and to increase its portability.

Cells can communicate the data from output to input channels in a syn-
chronous or quasi-asynchronous mode. If in synchronous mode, cell input is
updated at the end of each computation cycle. In quasi-asynchronous mode,
cells are grouped in subsets and the output channels of the different groups are
routed at different communication sub-cycles in the middle of the cell computa-
tions. So different cells reading a same output channel can read different values,
depending on the concrete time of execution of their behavior functions in the
computation cycle. The number of communication sub-cycles can be tuned at
execution time. More sub-cycles lead to more asynchronism but to longer cell
execution cycles.

In order to ease the extraction of results from large cell networks, we have
designed some collector generic classes, and we have defined some new missions
to easily run these data collection from a controlling sequential program. All
these collections of large data are stored in chunks. These have been improved to
map into files and avoid memory size limitations. Some optimized functionalities
to read and write large data files storing N -dimension arrays of output channel
values, have been added to parXXL. For example, they ease the initialization of
large cell networks from data large files containing initial values for the output
channels.

Finally, three parXXL runtimes exist: a first on top of MPI, a second on top
of POSIX threads for multicore shared memory architectures, and a third on
top of shared memory segments. All runtimes are available on 32 and 64 bits
architectures. Moreover, great efforts have been made to improve the portability
of our C++ template classes and functions, and our C++ meta-computing code.
All these improvements make parXXL available and efficient on a larger set of
parallel architectures.

3 Interactive parallel computations

One original property of the InterCell software suite is that cellular computation
can be performed interactively. It allows visualization, writing and loading of
snapshots, setting of cell values. This are all performed while the cellular au-
tomaton is briefly suspended. In addition it allows to step through the execution
of the application. In our context that means that compute cycle after compute
cycle may be observed individually. These features are provided by the Booz

library that includes a visualization client, see Fig. 3.



Fig. 3. Example of interactive Booz client

This interactivity allows to use
a cluster for situated systems, like
robots, where cellular computation
models the inclusion of an artificial
brain in some real robot perceptivo-
motor loop. It also provides a real-
time view of the running process, that
allows to detect convergence prob-
lems of the cellular models. Such an
on-line availability allows program-
mers of cellular automata to proto-
type their model at a large scale, from
the very first design stage. This is of primary importance since properties of
large scale discrete dynamical systems are not easily predictable from small pro-
totypes.

4 Examples of InterCell usage

Fig. 4 to 7 show examples of InterCell simulations. Fig. 4 is a classic 2D-Jacobi
relaxation, where each cell simply computes the average value of its four neigh-
bors. It has been implemented to test the functionality of our software suite.
The application of Fig. 5 is modeled as a 2D grid of cells, each connected to
its 8 neighbors. Here, each cell represents the elongation of a coil spring that
is coupled to neighboring springs, in order to create 2D waves along the grid
surface. The springs have different elasticity, the “lens” that is visible in light
yellow shows the distribution of the elasticity among the springs.

The next sections, give the details of two simulations are real use cases of the
InterCell suite, and that correspond to applicative research that was achieved in
our laboratories.

Fig. 4. InterCell simulation of a Jacobi re-
laxation

Fig. 5. InterCell simulation of a wave prop-
agation



4.1 High level application codes

As illustrated in Fig. 1, applications are developed using high level program-
ming environments and not the parXXL or Booz layers directly. The semicon-
ductor simulation detailed in Section 4.2 has been implemented using only the
SAGE programming environment. This allows to implement our PDE within a
mathematical paradigm, easily. Our PDE solver module then automatically gen-
erates C++ source files that wrap Booz and parXXL functionalities. A final C++
compilation produces a parallel application running on any parXXL runtime.

The cortical networks detailed in Section 4.3 have been developed in C++,
using our Bijama library (see Fig. 1). Again, the application developer focusses
on the expression of his scientific models. For himself, he does not implement
process creation, internode cluster communication, or process synchronization.
However, the distribution of the neural network on the different cluster nodes is
not yet fully automatic and requires some directives of the application developer.
This issue in currently under investigation.

4.2 Modeling and Simulating a Semiconductor

Fig. 6 is a more complex simulation from semiconductor physics. It shows the
result of a simulation of the electrostatic potential in a 2D P-N junction whose
N-doped side is the square upper part while the P-doped part is the rest. This
computation is done through the sage/escabooz part as described in Fig. 1.

Fig. 6. InterCell simulation of a 2D P-N
junction

The numerical method is based
on a modified version of the Least
Squares Finite Element Method (LS-
FEM), see [6]. From LSFEM, we have
derived a “local only” recursive rule.
It allows for each point in a mesh to be
considered as an independent automa-
ton. This is particularly well suited
for fine grained parallel computing.
The initial problem is a partial dif-
ferential system of equations involving
a Poisson equation and the field ex-
pressions from the doping of the ma-
terial. Added to this system is a set
of boundary conditions: Dirichlet type
where ohmic contacts are present, and Neumann type elsewhere.

The complete modeling and development process is thus as follows: the physi-
cist (non-expert in parallelism) programs his equations in the SAGE[8] language,
see Fig. 2, focusing entirely on physical and mathematical issues. Then, the
escabooz.sage software suite, formally derives an update rule for each point of
a given discretization mesh. Thereby it describes a complete cellular automaton.
The SAGE program applies Newton’s minimization method to a global error



term. This error results from a discretized form of the initial partial differen-
tial problem. Following Newton’s method, an approximate solution is fed to the
automaton. Once run in asynchronous mode, the automaton eventually stabi-
lizes around a fixed point. This is the nearest minimum of the error term and
corresponds to the solution to the discretized problem.

4.3 Modeling and Simulating Cortical Networks

Fig. 7 illustrates a second kind of application of InterCell simulations. In this
simulation, we aim at studying the emergent properties of dynamic neural fields,
a model of cortical neural tissue [1], in particular focusing on sensorimotor control
of embedded physical agents (e.g. a robot). The interaction of perceptive, motor
and motivational flows of information within the neural network allows the agent
to interact on a physical world. The bio-inspired nature of this work requires to
simulate large population of neurons that are permanently feeded by a perceptive
input and that produce motor actions. To simulate the dynamic neural fields,
the continuous equation (1) is discretized using the Euler scheme.

τ
du

dt
(x, t) = −u(x, t) + h +

∑
y

w(x, y)f(u(y, t)) + s(x, t) (1)

where u(x, t) is the membrane potential of the neuron at position x and time
t, h is a constant baseline, w(x, y) is the kernel defining the interactions within
the neural field and s(x, t) is the input provided at position x and time t. The
membrane potential u(x, t) of all the cells evolves according to the same equa-
tion and therefore the computations are homogeneous across the cells. Simulat-
ing dynamic neural fields is, in this regard, particularly well suited for parallel
implementations since a simulation usually involves large populations of fine-
grained units. InterCell provides essential tools for scaling up models for realistic
situations.

The simulation shown in Fig. 7 is a visual search task involving 11 2D dy-
namic neural fields, each made of 60 × 60 neurons (see [3] for details). The
perceptive input is pre-processed along several dimensions (two colors, two ori-
entations) and feeds a perceptive neural field. Specific connectivities within and
between the fields lead to different emergent properties at the level of a neural
field such as a competition between potential candidate targets, a working mem-
ory of targets that have been analysed or anticipatory mechanisms when camera
movements are involved. On the bottom left of Fig. 7 is represented a visualiza-
tion of the simulation with InterCell tools. The opportunity to visualize the whole
network or a part of it is essential for tuning the parameters of the neural fields.
In addition, InterCell allows to interact with the simulation on-line, constantly
perturbating the network with a new perceptive input which is critical in the
study of sensorimotor control.

The performance measurements provided in Section 5.1 were evaluated on a
subpart of the model. This subpart involves three neural fields consisting of an
input feeded by five stimuli, a competition neural field and a working memory.



Fig. 7. InterCell implementation and run of a biologically-inspired neural network, for
environment perception and robot control

The connectivity within this model is rather dense. It contains 10800 neurons
with a total of around 30 million connections. InterCell easily handles large net-
works with dense connections while such a scale-up is hardly handled by a single
computer.

The modeling and development process is as follows: the computational neu-
roscientist (not expert in parallelism) writes done the differential equations gov-
erning the evolution of the state of the neurons. This definition is written in
C++ with the Bijama library. It involves defining a step method for the units,
the connectivity kernel, the parameters of the equation (e.g. h in eq. 1) as well
as communication methods that allow to embed the model within the physi-
cal environment. Once these methods have been defined, InterCell automatically
handles the parallel computations and communications and the situated agent
can be controlled by a simulation running on a cluster without taking care of
where and how the simulation actually runs.

5 Experimental performances

5.1 Performances of a wave propagation simulation

In Fig. 8 we show the results of a first performance evaluation of the second
application of Section 4 on the InterCell cluster, see Fig. 5. This cluster consists of



256 2.66 GHz Xeon bi-core nodes that are connected via standard Gbit Ethernet.

The example application consists of a 100 × 300 grid of cells that is split
evenly among the parXXL processes. We experimented several different splitting
strategies to find out that (for this example) the difference in performance is
negligible. Thus, here we only give the values for a split along the long side
(300) of the grid. Thus the grid is divided into 1×2 parts, 1×3 parts etc, where
each part is treated by a separate parXXL process. In one series of experiments
we placed one parXXL process per compute node and in a second series we placed
two, i.e one parXXL process per compute core.

Each data point in the figures represents an average over several runs of
batches of 1000 compute cycles. We have chosen 1000 compute cycles per run,
because it leads to execution times of our benchmarks from 5.7s to 45.5s in
function of the number of parXXL processes used. These times are all several
orders of magnitude greater than the precision of our time measurement tool. We
did not observe significant variances of our measurements other than changing
the number of process per core or node. So we concluded that the variation that
was introduced by the OS or the interconnexion network was negligible. As a
consequence, we only performed 3 runs per parameter set to do the averaging.

Plotted are the run times broken down to the time for one compute cycle for
the network. Fig. 8(a) shows the time against the number of nodes, Fig. 8(b)
the time against the number of parXXL processes. We see that both series show
an optimal speedup in the range of 2–8 processes, and up to 16 processes the
speedup is still reasonable. From thereon the addition of additional processes /
nodes doesn’t accelerate the computation. So for the given problem, a number
of about 2000 cells per parXXL process is a reasonable minimal requirement.
Fig. 8(a) also demonstrates that this setting is well suited to take advantage of
the two cores in each node.
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Fig. 8. Execution time per compute cycle of the wave propagation simulation



5.2 Performances of a biologically-inspired neural network

In Fig. 9 we show the results of a first performance evaluation of the biologically-
inspired neural network application introduced in Section 4.3, see the bottom of
Fig. 7. Again we used the dual-core nodes InterCell cluster to run our benchmarks,
and a similar performance measurement approach.

This neural network system is composed of three cortical maps: a medium one
and two large ones. Execution attempts on 1 or 2 nodes failed, because of lack
of memory. We implemented the medium map on 2 parXXL processes running on
2 CPU cores located on 1 or 2 nodes (dual-core nodes), and we distributed each
large map on 1 to 8 processes running on other cores and nodes. We realized
two series of benchmarks with 1 and 2 parXXL processes per node. To fulfill the
minimum memory requirements of the application, we had to launch at least 4
parXXL processes running on 4 nodes and 6 parXXL process running on 3 nodes,
respectively.

We achieved a good scalability distributing the large cortical maps, and a
speed up close to 6.8 using 18 = 2 + 2 × 8 nodes in place of 4 = 2 + 2 ×
1 with one process per node, see Fig. 9(a). However, at the opposite of the
wave propagation simulation, execution times are approximately 2 times longer
when running two parXXL processes per dual-core node, see Fig. 9(b). More
investigations are required to identify the contention: this might be due to a
memory contention during computations steps, or a network contention during
communication steps, or both.

6 Conclusion and perspectives

In this paper we presented InterCell, an open, operational software suite published
under the GPL, see http://ims.metz.supelec.fr. This development tool is cur-
rently used by researchers in optics, photonics, and cortically-inspired neural
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networks. The later models are generally large and require interactive execution
on large parallel systems. To these researchers, InterCell offers an easy-to-use tool
to model and implement on a large, realistic scale. It provides automatic code
generation and permits the parallel and interactive control of the simulation.
First performance measurements are satisfying and show a good potential to
address problems on a larger scale.

The next step in the development of InterCell will thus be to tackle applica-
tions of a larger scale: complex models are under investigations and large scale
simulations are being implemented. Therefore, the Sage program that is cur-
rently used to specify the cellular automaton (which is still sequential) has to
be parallelized to be able to process large problems rapidly. Also, some serial
optimizations remain possible in the parXXL cell management.
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