2009 15th International Conference on Parallel and Distributed Systems

Implementation of the AdaBoost Algorithm for Large Scale Distributed
Environments: Comparing JavaSpace and MPJ

Virginie Galtier and Stéphane Vialle
Supélec
2 rue Edouard Belin
F-57070 Metz
{virginie.galtier,stephane.vialle} @supelec.fr

Abstract—This paper presents the parallelization of a ma-
chine learning method, called the adaboost algorithm. The
parallel algorithm follows a dynamically load-balanced master-
worker strategy, which is parameterized by the granularity of
the tasks distributed to workers. We first show the benefits of
this version with heterogeneous processors. Then, we study the
application in a real, geographically distributed environment,
hence adding network latencies to the execution. Performances
of the application using more than a hundred processes are an-
alyzed in both JavaSpace and P2P-MPI. We therefore present
an head-to-head comparison of two parallel programming
models. We study for each case the granularities yielding the
best performance. We show that current network technologies
enable to obtain interesting speedups in many situations for
such an application, even when using a virtual shared memory
paradigm in a large-scale distributed environment.

Keywords-Adaboost; MPJ; JavaSpace; Java; Grid Comput-
ing;

I. INTRODUCTION
A. AdaBoost Algorithm Overview

A key issue in the fields of machine learning and pattern
recognition is the choice of highly discriminant features
keeping the feature space small enough to be processed in a
reasonable amount of time. The AdaBoost algorithm [1] is
an iterative algorithm that selects an optimal combination
of elementary features among a large set of candidates
for a two-class separation problem. The fundamental idea
underlying AdaBoost is to build a strong classifier which
decision is a linear combination of multiple weak classifiers
(or base learners) decisions, that is building an accurate
decision-making system based on a set of easily computable
tests. A weak classifier is usually an elementary learner
quickly trained to have performance slightly above 50%
on a training dataset. When used for feature selection, the
AdaBoost algorithm picks up one weak classifier from a
large set of those at each iteration. To ensure the optimality
of the weak classifier combination, the training examples
are assigned weights that change from iteration to iteration.
The previously misclassified examples are assigned higher
weights and the training error of each weak classifier at
a given iteration is computed as the sum of the weights

1521-9097/09 $26.00 © 2009 IEEE
DOI 10.1109/ICPADS.2009.67

655

Stéphane Genaud
AlGorille Team - INRIA
Campus Scientifique - BP 239,
F-54506 Vandoeuvre-lés-Nancy, France
stephane.genaud@inria.fr

associated with the examples it misclassifies. The weak
classifier providing the lowest weighted error is selected,
and a new weight distribution over examples is computed for
the next iteration. The selected weak classifiers are therefore
more and more focused on the misclassified examples. The
complete AdaBoost algorithm is described in Table 1.

Given training examples {(z;,y;)}, i
x; € X are examples,
yi € {—1,+1} label positive or negative examples,
and a set of weak classifiers { h;}, where h; : X — {—1,+1}
Initialize step ¢ = 1, error = 1, and example
distribution Vi, Dy (i) = 1/n
while error > £ do
Train all weak classifiers using D¢ and find the best
classifier hy which produces the minimum error:
h¢ = argmin €, where ¢; Z Dy(i)
hj ithj(23)#y:
Update distribution for next step using the best weak classifier:
Dy ()= Dy (i) exp(=aty;he zz'))‘ where at:% ln(lf_ft)
Dyyn et
Compute strong classifier from best weak classifiers
H(z;) = sign(EL athi(z;)) and error=

1,..,n where:

and error:
1

i H)i

t=1+1
Output the final hypothesis H(z) = sz’gn(zi athi(x))

Figure 1. AdaBoost Algorithm

B. Motivations

The final goal of the application parallelization is to allow
signal processing researchers to quickly test performances
of new classifiers trained by the AdaBoost algorithm. In a
previous work [2], we have proposed a parallelization using
JavaSpace, with a static distribution of the computations.
This solution exhibited a good speed-up on a small homo-
geneous cluster (30 nodes). This approach is summarized
in section II-A. JavaSpace is a virtual shared memory
Jini service, and the Sun implementation we used (called
outrigger) only provides a centralized shared memory, which
could constitute a bottleneck. When time to move to a larger
scale came, we wondered whether the centralized nature of
JavaSpace would put a limit on performance, compared to

IEEE
computer
psoaety

Authorized licensed use limited to: UR Lorraine. Downloaded on March 25,2010 at 18:31:49 EDT from IEEE Xplore. Restrictions apply.

some other programming models such as message passing.
The execution environments we target must be larger than
just a local cluster, and as a result, heterogeneity in the
computing resources must be considered. However, our
users can get an exclusive usage of these resources, so
that the heterogeneity does not vary in a significant way
during execution. Finally, while weak classifiers used so
far exhibit similar computing requirements from one to
another, the framework aims at enabling the plug-in of
any kind of classifiers. Some classifiers could be more
CPU-consuming than others, making difficult to predict
beforehand how computing time will vary. For all those
reasons, we propose a second version of our distributed
AdaBoost algorithm, performing an adaptive distribution of
the weak classifiers. To implement it, we naturally extended
our previous JavaSpace development, but to compare its
scalability, we also developed the application in the message
passing programming model with P2P-MPI.

This paper is structured as follows: section II explains the
principles of the parallel algorithm, and its load-balancing
strategy using an adaptive distribution. Section III presents
some related works. In section IV, we briefly introduce
JavaSpace and P2P-MPI, and we explain how they are
used to implement the algorithm. In the second part of the
paper (section V), we carry out three experiments. The two
first experiments show results on a single cluster to validate
the adaptive approach and the scalability of the parallelized
implementation (up to 256 processors). The third experiment
describes results in a large scale distributed environment
(120 processors on three distant sites). Finally, concluding
remarks and future works are presented in section VI.

II. ADAPTIVE PARALLELIZATION STRATEGY
A. Static Distribution

All our parallel versions of the AdaBoost algorithm follow
a master-worker pattern. In the first version, where the P
workers are supposed homogeneous and where all classifiers
are supposed to require sensibly the same amount of CPU-
time, the master divides the N classifiers into P intervals
of N/P classifiers. Because all workers are in charge of the
same number of classifiers (excepted for one worker that
is also assigned the remaining), we call this distribution a
static distribution.

Both master and workers get a local copy of the database
of E training examples. During the initialization step, every
worker pre-processes the examples and retrieves a range
of classifiers specified by the master. Then, at each step,
a worker starts by training the classifiers it is in charge
of on the examples database, and next it lets the master
know which of its classifiers exhibited the smallest error
(this classifier constitutes a candidate). It then waits for
information from the master stating which of the P can-
didates was the best. If that classifier was within the range
it is in charge of, it removes it from its list. In any case,

656

it updates example weights according to the performance
of the best candidate of that step before starting a new
step. The master, in addition to the operations already
described (setting-up intervals of classifiers, selecting the
best candidate and informing the workers) also updates at
each step the final strong classifier by combining the best
candidates and computes the error of that strong classifier
on the training database of examples. When the error falls
below a given e value, the master orders the workers to stop
and delivers the complex classifier.

B. Adaptive Distribution

Our proposal for a dynamic load-balancing of the appli-
cation is the introduction of an adaptive distribution during
the first step. The user can specify the granularity of the
distribution by setting the size S (S<N/P) of the intervals
of weak classifiers distributed by the master. If S = N/P,
the distribution is equivalent to the static distribution. Such
an interval is called chunk in the following. The initializa-
tion and first step of the previous algorithm are modified
as follows: each worker pre-processes the examples, and
retrieves a first range of S classifiers. It trains those S
classifiers, finds out which one performs the best, and tries
to retrieve another set of S classifiers. If there are classifiers
left, it repeats the previous step and updates its candidate
if necessary. If there are no more classifiers left, it informs
the master of its candidate. The following steps are similar
to the previous algorithm. Thus, during this adaptive step,
each worker requests greedily and repeatedly a share of weak
classifiers. Consequently, faster workers end up with more
classifiers. This assignment of the first step is then kept for
the entire computation. Figure 2 depicts the modified version
of the algorithm.

Given our target execution platform, we assume that the
processing capabilities of the resources do not vary during
execution (no external load) and therefore a single adaptive
step is sufficient to balance the load over the processors.
Note also that a) a given classifier always leads to the same
operations, no matter the weight of the examples (which is
the only changing data from one iteration to the next), and
b) even though at each iteration one of the workers removes
one classifier, it has a negligible effect on the computation
time given the large number of classifiers.

The remaining causes of load-unbalance, that we address
using this method are:

o network heterogeneity: if we distribute workers over
several sites, the requests of remote workers will arrive
later than those from workers close to the master.
processor heterogeneity,

load heterogeneity: all classifiers do not require the
same amount of computation, as will be detailed in
Section V-A (for instance, in Figure 2, classifiers E and
F takes longer to train than classifiers a b ¢ d g or h).

Authorized licensed use limited to: UR Lorraine. Downloaded on March 25,2010 at 18:31:49 EDT from IEEE Xplore. Restrictions apply.

Worker 1 Master Worker 2

sets of classifiers

try and retrieve

< try and retrieve -

train abc
train dEF
_try and retrieve _"best = a

oh!
train gh
Tbest=h

-« best=h
compare candidates

<« best=h : best=h
' update

- try to retrieve E
S —

best = E >

best=E

initial adaptive step

_ try to retrieve

-t

update__

update strong classifier error

train dEF train abcg

regular steps

if error < €
S — 1 B ~ best = C

est=d

Figure 2. Distributed AdaBoost Algorithm with Adaptive Initial Step

This adaptive scheme results in a load-balancing, whose
efficiency depends on the granularity of the distribution (i.e
choosing the chunk size S): too large chunks lead to uneven
finish times between workers, while too small chunks add
a communication overhead caused by the numerous work
requests.

III. RELATED WORK

To the best of our knowledge, there are few results
regarding the parallelization of AdaBoost to reduce the
learning phase running time. In [3], the authors propose
a method of parallel boosting that operates on distributed
databases. Their objective is to overcome the problem of a
massive database that cannot fit into main computer memory
by distributing the learning process on disjoints datasets.
Another work ([4]) with the same objective proposes to train
multiple base learners simultaneously. This work focuses
on several heuristic methods to find a set of (statistical)
distributions that can be generated independently in advance
of the training process. This work outlines general methods
but does not concentrate on implementation issues and
performances as we do.

Regarding the load-balancing issue, a considerable
amount of research work has addressed this problem in the
case of master-worker applications. Many algorithms have
been produced to compute optimal static distributions of
tasks to workers. The divisible load theory [S5] has estab-
lished results for various network topologies. However, this
theory assumes that the work can be arbitrarily partitioned

657

and that each part has a linear cost. Some other works
(e.g [6], [7]) model the computation and communication
costs as functions of the processor or network link used,
and propose dynamic programming algorithms to compute
an optimal static solution.

When the computation cost of each load element varies,
the problem of computing an optimal distribution is in-
tractable in practice. Even an exhaustive search of solution
cannot tackle the variations bound to system-level fluctuating
parameters (e.g cache misses, network cross-traffic). Hence,
a dynamic load-balancing strategy is more suitable. A gen-
eral framework for such load-balancing in grid environments
has been proposed early by Goux et al. [8]. We could have
used this system if the interface allowed linking with Java.

IV. PARALLEL IMPLEMENTATIONS

One contribution of our work consists in a head-to-head
comparison of two programming models, starting from the
same sequential Java application and parallelization strategy.

A. JavaSpace and P2P-MPI

An evolution from the two-decade old Linda system, but
benefiting from Jini and Java object-oriented paradigm and
portability, JavaSpace [9], is a Jini service enabling programs
to exchange objects through a virtual shared memory. Object
retrieval is done by matching a template (associate lookup).
The proposed API is simple, yet rich enough to enable
fast and easy development of loosely coupled distributed
applications. Several implementations (both commercial and
free open-source) proposing various associated tools and
demonstrating different performances exist, and we used
the Sun’s implementation (outrigger) provided with the Jini
Starter Kit.

P2P-MPI [10] is a framework designed for running
message passing programs in large scale heterogeneous
distributed environments. On one hand, it is a middleware
system which offers system-level services to the user, such
as finding requested computing resources, transferring files,
launching remote jobs, etc. On the other hand, it provides
programmers with a communication library which follows
the message passing programming model. More precisely,
P2P-MPI contains an MPJ (Message Passing for Java) [11]
implementation. MPJ is a recommendation from the Java
Grande Forum, and proposes an adaptation of the MPI
specification [12] for Java. The API primitives are based
on blocking or non-blocking send and receive operations.

B. AdaBoost Implementation

To make a fair comparison of the performances, we have
developed an MPJ version that mimics the JavaSpace pro-
gram structure (see Figure 2). Like in the JavaSpace version,
the MPJ program has one process exclusively playing the
master’s role of distributing classifier chunks to workers.

Authorized licensed use limited to: UR Lorraine. Downloaded on March 25,2010 at 18:31:49 EDT from IEEE Xplore. Restrictions apply.

In JavaSpace, the master puts all the chunks in the space,
and workers issue a take of one chunk each time they need
work to do, consuming the chunks. When a worker has
finished to compute the classifiers from its current chunk, it
writes the best weak classifier (candidate) to the space. The
master reads these best weak classifiers and once all have
been returned by workers, the master writes to the space
which is the best for the iteration.

In MPJ, the master asynchronously waits for work re-
quests from any worker. When a worker sends a work
request, it embeds in the message the best weak classifier it
has found in the previous chunk (except for the first work
request). Immediately after a request is received, the master
ranks the result received, and sends the next chunk to be
computed to this worker. This is iterated until all chunks
have been distributed. Once all chunks have been computed,
the master broadcasts to all workers the best weak classifier
for the iteration.

On one hand, JavaSpace proposes a more abstract and
concise style for communications. Comparatively in MPJ,
we have to use different tags to differentiate the messages.
For example, after a work request, a worker must distinguish
if the answer received contains a new chunk or the final
result for the iteration. On another hand, MPJ offers more
control over the way the communications are made. For
example, it is noteworthy that MPJ can semantically express
a broadcast while JavaSpace cannot. MPJ has a specific
primitive (Bcast), which enables the communication library
implementation to optimize this collective communication
(e.g use of a binomial tree in P2P-MPI).

V. EXPERIMENTS

The experiments objectives are to observe the behavior
of the two frameworks on the AdaBoost application, with
two different execution platforms: one single cluster, and a
set of processors taken from three clusters distributed at a
large geographical scale. Our first and second experiments
consist in testing the application speed-up on the single
cluster, and then to assess the validity of the adaptive
strategy when the CPUSs’ loads are unbalanced. In the third
experiment we evidence the effects of wide-area latency
network communications on the execution by using three
clusters at different sites. Before describing the experiments
in these respective environments, we detail the application
dataset used in all experiments.

A. Dataset Characteristics

The proposed algorithm has been tested on a standard and
widely used AdaBoost application: the “Viola-and-Jones”
face detector [13]. In this application, a set of very simple
features such as Haar filters response, i.e binary filters requir-
ing only additions on some adjacent pixels intensity, are used
to detect faces in real time in an image sequence (typically
24 images/s). The weak classifier training process therefore

658

total execution times for adaptive version: p2pmpi vs. javaspace

I p2pm;|)i, 64 wolrkers (2/Inode) I
450 p2pmpi, 64 workers (1/node) ---x--- 7
Js, 64 workers (2/node) ---*---
400 p2pmpi, 128 workers (2/node) —&
p2pmpi, 128 workers (1/node) --m--
js, 128 workers (2/node) ---&--
350 p2pmpi, 256 workers (2/node) ---e--- |
p2pmpi, 256 workers (1/node) ----4 -
. js, 256 workers (2/node) ----&--
£ 300
° —
£ EE— .
= Koo koo
3 280 e [R [SRRREEEEE Koo *
> SR S fommmmmm B R LR X-=== k
200
P -
150 . 8.«
b=l 1[3~~_:,§:; Zem «ﬁ,,:*—»rgﬁ/— = ZE% e’ Tl
100
R
50
0 © N ['e} ~— (32} © o <
~— [se} © [52] © N 0 o
— N (o) o -~
chunk sizes - N
Figure 3. exec. times on a homogeneous cluster.

consists in computing the response (a scalar number) of a
large number of such Haar filters (134,736 in our case) on a
large dataset (8,500 24x24-pixel images in our case) and in
finding a threshold separating positive and negative examples
according to this response at each iteration. The weak learner
is therefore a linear separator which input is the response
of a Haar filter. The filter (and its associated threshold)
providing the minimal weighted error is then selected. In
our experiments, the algorithm is run so as to achieve a 3%
error rate on the training set (e = 0.03).

We must notice that each Haar filter has a different
computation cost, depending on the filter type and location
in the image. Hence, it is important to have filter types ho-
mogeneously scattered over the workers to average the load
of chunks assigned to workers and avoid load imbalance. We
have examined the input dataset of filters set and found that it
was the case. To double-check this, we have also conducted
experiments using several shuffled datasets, in which filters
are randomly permuted. Overall, runs with shuffled datasets
exhibited comparable execution times.

B. Experiment 1: Homogeneous Cluster

For this first experiment, we use a specific cluster to
get up to 256 nodes. Each node hosts a bi-core processor
Xeon-3075 2.66GHz, 4GB RAM, and the interconnect is a
Gigabit Ethernet network with a CISCO 6509 switch. Figure
3 shows the performance of the two frameworks for 64,
128 and 256 workers depending on chunk size (right-most
chunk size is equivalent to the static version). In all tests,
we map exactly one worker per core. Some tests were run
using only one core per node to observe effects of memory
contention. We observe the same differences with both
P2P-MPI and JavaSpace for 64 workers (for a sake of room

Authorized licensed use limited to: UR Lorraine. Downloaded on March 25,2010 at 18:31:49 EDT from IEEE Xplore. Restrictions apply.

JavaSpace | P2P-MPI | JavaSpace | P2P-MPI
workers static static adaptive adaptive
64 40 56 30/49 56/60
128 88 86 64/94 75/104
256 169 168 123/177 167/207
Table 1
SPEED-UPS

we only plot the comparison for P2P-MPI). With twice or
four times more workers, either mapping lead to equivalent
performances, probably because each worker makes less
memory accesses. For each number of workers, we choose
different chunk sizes, starting from one equivalent to the
static version. For example, for 64 workers we start with
|134736/64|=2105 filters per chunk. The chunk size is then
recursively halved. We see that using smaller chunks makes
very little difference in the performance results. There are
three reasons explaining this observation: a) the computation
load required by the dataset is well scattered over workers,
b) the processors are homogeneous, and c) the chunk sizes
we test are all divisors (or nearly) of the total number of
filters per worker. We have checked that choosing a bad
chunk size on purpose significantly increases the execution
time. For example, a chunk size of 2072, which represents
an even share for 65 workers, instead of 2105 for 64 workers
leads to a 51% increase because one worker is assigned two
chunks while all others have one. The speed-ups obtained are
reported in Table I, relatively to the sequential time: 11598s
(more than 3h). For runs with the adaptive distribution, we
report the worse/best speed-ups. These results show a good
scalability of the program on this cluster.

C. Experiment2: Heterogeneous Cluster

We then artificially introduce some heterogeneity in the
processors, by permanently running an auxiliary program
on half of the CPUs used. When the chunk size is the same

total exec times for adaptive version, half CPUs loaded 50%

1.1e+06 T T T . . :
p2pmpi, 32 workers (1/node) —+—
1e+06 p2pmpi, 64 workers (1/node) ---x--
p2pmpi, 128 workers (1/node) ---*---
900000
800000 /
g 700000 <
£ 600000 B
8 /
3 500000 .
400000 e
R S S b T e
300000
200000 .
SEEEEEE R RRE > E RRERREEE O 3
100000
@ e S 9 p> @ © o < o
A @ © ™ © ~) S =
N N w0 o - ~
chunk sizes - N ~

Figure 4. Exec. times on a simulated heterogeneous cluster.

659

& Strasbourg

Toulouse

Figure 5.

Locations of clusters used in experiment.

as in the static version (right-most chunk size values), the
performance (Figure 4) largely suffers from the processor
load imbalance. The adaptive version achieves a good load
balance with many different chunk sizes: in the experiment,
the load balance seems to be reached for chunk sizes from

% to 1178 the chunk size of the static version.

D. Experiment3: Grid

1) Experiment Setup: In this experiment, we want to
characterize the effects of wide-area network communica-
tions on the execution. We use Grid’5000 [14], a highly
controllable experimental grid platform.We place 40 workers
processes on each of three remote clusters (Nice, Rennes,
Nancy, several hundred kilometers apart on the map shown
on Figure 5). The master (and the JavaSpace service in the
case of JavaSpace) is in a fourth distant cluster (Lyon). The
selected clusters have dual-core nodes, and apart from the
node running the master and the Jini services, each node
runs two workers, for a total of 120 workers. The four
clusters are linked through a 10Gbps backbone. Each node
is connected through a 1Gbps link to the router, which
can aggregates 10Gbps to the backbone. The RTT (ping)
from the site hosting the master and Jini services to the
other clusters are 10.5ms, 12.5 and 17ms. We have chosen
clusters whose hardware is as similar as possible in order
to isolate the effects that are related to network. In each
cluster, all selected nodes are dual-core Opteron 2GHz,
2GB RAM, either embedded in a HP ProLiant DL145G2
chipset (clusters in Rennes and Nancy), or in an IBM
eServer 325 chipset (clusters in Nice and Lyon). However,
the performance of the two hardware differ from about 10%

Authorized licensed use limited to: UR Lorraine. Downloaded on March 25,2010 at 18:31:49 EDT from IEEE Xplore. Restrictions apply.

340000 P2P-MPI 1site (Rennes) —— |
JavaSpace 1site (Rennes) —x—
P2P-MPI 3sites - -
320000 JavaSpace 3sites =@
g
< 300000
5
£ 280000
= ...
i) :
S 260000 [iF
S :
2 e
O 240000 Fg
@
S
220000
i
200000
NOO O o o N
TN < <o} © N
— N 0 —
chunk size (in filters) -
Figure 6. Total execution times

accordingly to the SciMark benchmark,whatever the JVM
used.

2) Comparative Performances: Figure 6 presents the total
execution times for JavaSpace and P2P-MPI when varying
the chunk size. The boldest, dashed lines shows the multi-
site execution times. We also show for reference, the times
obtained on only one of the three cluster (Rennes), plotted as
thin, solid lines. The first observation is that the JavaSpace
performance is roughly 10% less than the one of P2P-MPI in
most cases. Thus, this result is overall encouraging for using
a virtual memory paradigm for this kind of application even
at a large scale. The second observation is that performance
in the multi-site configuration is competitive with the single
cluster configuration. The JavaSpace execution on multi-site
could reach 93% of the performance of the single cluster
execution (chunk size 280) and the multi-site P2P-MPI ex-
ecutions are very close on average to their cluster counterpart
for large chunk sizes. The third observation is that executions
with these clusters are more sensible to the chunk size
choice. On the Rennes cluster, the execution time can drop
by 13% and 17% with P2P-MPI and JavaSpace respectively,
relatively to the static distribution (it was only 7% and 6%
with 128 workers in Section V-B). The drop is even bigger
for P2P-MPI on multi-clusters (up to 20%), while it remains
limited for JavaSpace (15%) because the range of chunk
sizes involving a performance increase is narrower.

3) Detailed Analysis: However, the above results show
that the wide area communications have little impact in this
application. Provided we choose the right chunk size, the
performance is mostly governed by the CPU power. Yet, a
bad choice for the chunk size may lead to a performance
collapse, like in the situation observed for a chunk size of
70 in JavaSpace, which takes about 550s.

In order to understand the performance differences for
such a chunk size, we must examine the activity of each
worker.

660

computation time and filters assigned (p2pmpi,70,paravent) (unbalance=1.11)

1300

250000 . T T
1 4 1250
\‘
200000 ﬁju ”1'1 I I (H 1200
i LT i
afH e e Tl A I] I
I | Hin I | I I I 1150
|
- i 4“‘; R TR ‘H‘m I “H“ i st
E 150000 | | [|/]/]11[1]1] | Il \ | 1100 g
o [=4
5 (HTHAANE | 1\ IR AR \ 2
2 t | [ikl 1050
£ °
3 2
£ 100000 | I | I 1000 &
8 I
950
50000 900
1
ime| 850
ing t syn B—
0 J i ﬁ A) 800
0 20 40 60 80 100 120
worker
computation time and filters assigned (JS,70,paravent) (unbalance=1.23)
250000 . . T T . 1400
i T T T
| \\[\ N] I |
T AT AT ittt
I i | \“ H i AT [1200
200000 fff| WA i Il i
li y‘ AT
il It A 1000
& | i U LTt | e I \‘ il
£ 150000 i i ot L it 3
) | c
£ 11111 5
) Uil soo &
H 5
£ 100000 z
Q
8
600
50000
e 400
i T
ing il 5% ﬁ” - |
0 ! I ! ! 200

I
60 100
worker

80 120

Figure 7. Compared behavior on one cluster, chunk=70

In each graph of Figures 7 and 8, we draw the time each
worker (identified by its number on the horizontal axis)
spent computing (green, bottom area) and communicating
(blue, upper area). These times are on left vertical axis. We
superimpose the number of filters assigned to each worker
as a red line (to be read on the right vertical axis).

We define an indicator to characterize the load balance of
an execution with w workers. Let C; be the time spent on
computations by a worker ¢, the load balance indicator is
max,, (C;)/average(Cy, ..., Cy). The executions on only
one cluster is shown in Figure 7. It shows an acceptable
load-balance, with 1.11 and 1.23 for P2P-MPI and JavaS-
pace respectively. P2P-MPI spent less time waiting than
JavaSpace, which suffers from its last worker being curi-
ously underloaded (this phenomenon was observed several
times). In the multi-site execution presented on Figure 8,
we observe huge imbalances for JavaSpace, with a load
balance indicator of 2.75. Some workers got as few as 210
filters to compute while some other got more than 3000. The
P2P-MPI execution with that chunk size leads to its worst
performance but does not reach such a level of imbalance,

Authorized licensed use limited to: UR Lorraine. Downloaded on March 25,2010 at 18:31:49 EDT from IEEE Xplore. Restrictions apply.

computation time and filters assigned (p2pmpi,70,3sites) (unbalance=1.28)

300000 T T T T T 1700
- { o - 4 1600
250000 {1t ﬂ¢\ e 2 1s00
s
WL |
il I | i ‘ il 1400
200000 - il e i
> I | ity | | i I 1300
E ik TR AR AR i 3
|
g A Y 200 &
o 150000 - I ﬂ H ‘ ‘ ‘ | ‘ g
£ 1 1100 ¢
2 !]
8 1000
100000 -
H \ ‘ 900
50000 - iltel i —v‘ it ‘ ‘ “i ¢H 800
I edmputing tmet | Eeeall W W W11 N 700
il
ing fi n ﬁ’” I I
0 L L il fl L 4\ 600
0 20 40 60 80 100 120
worker
computation time and filters assigned (JS,70,3sites) (unbalance=2.75)
600000 ————1—— e ———————— 3500
500000 | 0%
7‘ f LA H 2500
400000 ‘ i i
z M e
B3 U o
o W I ‘ 1 2000 £
2 A W 2
‘> 300000 H I i 8
AR
3 ||| 1500 2
£ i =
8
200000 ‘ ‘ ‘ ‘ \ E
H ‘ H ‘ H ‘ H 1000
100000 H Ll*l g -T}f i H ‘ “ ‘ 11 s00
i b Py |
i i of: I
ing ti ﬁ”’ ¥ i
0 L L il fl L L 0
0 20 40 60 80 100 120

worker

Figure 8. Compared behaviors for multi-site, chunk=70

with an indicator of 1.28. Our explanation for such a
situation is that workers access the JavaSpace unequally
in the presence of too many wide-area communications.
As a result, some workers are starving while some other
are overloaded. The difference in the behaviors of the two
frameworks can be explained by the different messaging
systems they employ. JavaSpace uses RMI while P2P-MPI
uses the Java NIO class, which provides the equivalent of
the select operation of libc. With NIO, P2P-MPI can
concurrently monitor events occurring on a vector of sockets
without creating one thread per socket. Finally, the reason for
the sudden execution time increase is not due to an increase
in the communication time but to a load imbalance.

E. Multi-site scalability

A quick note from a user point a view. Assuming a
user has only 40 available local processors, the running
time is for example in Rennes of about 600s. He can
wonder how much additional speedup he can get using extra
remote resources. Here, using two remote sites with 40 other
processors each, the running time is between 230—250s. The
gain is roughly 2.5 times for three times more processors.

Hence we conclude it is worth using such grid resources
with this application.

VI. CONCLUSION

In this work, we have achieved the parallelization of
a boosting application through two programming models:
one is the message passing model, used through the MPJ
implementation P2P-MPI, and the other is the black-board
model with the JavaSpace implementation outrigger. We
have extended the parallelization to an adaptive version of
the application to tackle heterogeneous environments. The
application belongs to a large class of problems, for which
the computation cost of a single element as well as the
computation capabilities are not precisely known, making
impossible to compute a schedule. Hence, our observations
may apply to a number of similar problems. We have shown
that the dynamic load-balancing scheme using an adaptive
step is effective in an heterogeneous context. The experiment
conducted in a large scale distributed environment shows
that the application can be used in such conditions with in-
teresting performances. Qur comparison of the performances
obtained with P2P-MPT and JavaSpace gives users helpful
hints to choose the granularity for the load-balance (chunk
size). Whereas we expected the latency to be an obstacle to
fine grain load-balancing, we have learnt from this work that
the current network technologies enable an unexpected large
range of chunk sizes yielding acceptable performances from
a user point of view. Applications with a structure similar
to the algorithm presented here are hence good candidates
for executions in large scale distributed environments.

Future work should study alternative approaches to avoid
the bottleneck at the master, which is obviously a limit to
the scalability of the application. Two possible directions are
foreseen. We can replace the single master by a distributed
set of masters coordinated in a hierarchical manner, as pro-
posed in [15], or we can suppress the master and implement
an election algorithm among workers so that they decide
which one has the best weak classifier at each iteration.

Acknowledgments

Experiments presented in this paper were carried out
using the Grid’5000 experimental testbed, an initiative from
the French Ministry of Research through the ACI GRID
incentive action, INRIA, CNRS and RENATER and other
contributing partners.

REFERENCES

[11 Y. Freund and R. E. Schapire, “Experiments with a new
boosting algorithm,” in Proceedings of the International Con-
ference on Machine Learning, July 1996, pp. 148-156.

[2] V. Galtier, O. Pietquin, and S. Vialle, “Adaboost paral-
lelization on PC clusters with virtual shared memory for
fast feature selection,” in IEEE International Conference on
Signal Processing and Communication, November 2007, pp.
165-168.

Authorized licensed use limited to: UR Lorraine. Downloaded on March 25,2010 at 18:31:49 EDT from IEEE Xplore. Restrictions apply.

[3] A. Lazarevic and 7. Obradovic, “The distributed boosting
algorithm,” in 7th ACM SIGKDD international conference on
Knowledge discovery. ACM Press, 2001, pp. 311-316.

[4] F. Lozano and P. Rangel, “Algorithms for Paralell Boosting,”
in Proceedings of the 4th international conference on Ma-
chine Learning and Applications (ICMLA’05). 1EEE Press,
2005.

[5] V.Bharadwaj, D. Ghose, and T. G. Robertazzi, “Divisible load
theory: A new paradigm for load scheduling in distributed
systems,” Cluster Comput., vol. 6, no. 1, pp. 7-17, Jan. 2003.

[6] S.Genaud, A. Giersch, and F. Vivien, “Load-balancing scatter
operations for grid computing,” Parallel Computing, vol. 30,
no. 8, pp. 923-946, Aug. 2004.

[7] O.Beaumont, A. Legrand, and Y. Robert, “A polynomial-time
algorithm for allocating independent tasks on heterogeneous
fork-graphs,” in 17th Intl Symp on Computer and Information
Sc. (ISCIS XVII). CRC Press, Oct. 2002, pp. 115-119.

[8] J.-P. Goux, S. Kulkarni, J. Linderoth, and M. Yoder, “An
enabling framework for master-worker applications on the
computational grid,” in 9th IEEE International Symposium on
High Performance Distributed Computing (HPDC’00). TEEE
CS Press, Aug. 2000, pp. 43-50.

[9] E.Freeman, S. Hupfer, and K. Arnold, JavaSpaces Principles,
Patterns, and Practive. Pearson Education, 1999.

[10] S. Genaud and C. Rattanapoka, “P2P-MPI: A peer-to-peer
framework for robust execution of message passing parallel
programs,” Journal of Grid Computing, vol. 5, pp. 27-42,
2007.

[11] B. Carpenter, V. Getov, G. Judd, T. Skjellum, and G. Fox,
“MPJ: MPI-like message passing for java,” Concurrency:
Practice and Experience, vol. 12, no. 11, Sep. 2000.

[12] M. Snir, S. W. Otto, D. W. Walker, J. Dongarra, and S. Huss-
Lederman, MPI: The Complete Reference. Cambridge, MA,
USA: MIT Press, 1995.

[13] P. Viola and M. Jones, “Robust real-time object detection,”
in 2nd International Workshop On Statistical And Compu-

tational Theories Of Vision Modeling, Learning, Computing,
And Sampling, Jul. 2001.

[14] E. Cappello et al., “Grid’5000: a large scale and highly
reconfigurable grid experimental testbed,” in 6th IEEE/ACM
International Conference on Grid Computing (GRID 2005),
2005, pp. 99-106.

[15] K. Aida, W. Natsume, and Y. Futakata, “Distributed com-
puting with hierarchical master-worker paradigm for parallel
branch and bound algorithm,” in 3rd IEEE International
Symposium on Cluster Computing and the Grid (CCGrid
2003), 2003, pp. 156-163.

662

Authorized licensed use limited to: UR Lorraine. Downloaded on March 25,2010 at 18:31:49 EDT from IEEE Xplore. Restrictions apply.

