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ABSTRACT
Our research project aims at enabling multi-simulation based
on the FMI 2.0 standard and the cooperation of multiple
FMUs (FMI simulation units). In order to support large scale
multi-simulations, our solution (DACCOSIM) runs on multi-
core and distributed architectures. To support variable step
size, the necessary error control and rollbacks are achieved
through a hierarchical and distributed control architecture. At
each step, simulation data communications also occur, but di-
rectly between FMU pairs in a fully decentralized fashion.
Moreover, DACCOSIM implements an algorithm to perform
the complex initialization of the various components of the
multi-simulation. DACCOSIM comes as a graphical frame-
work to easily design a multi-simulation and to automatically
generate associated code, and as a multithreaded and dis-
tributed library to execute it. We evaluated DACCOSIM on
an industrial use case provided by EDF (leading French util-
ity company), run on multi-core PCs and PC clusters. Pre-
liminary performance measurements on a 4-physical-core PC
exhibit a speedup compared to monothreaded Dymola execu-
tion using the same FMUs. On multi-core PC clusters we face
overhead communication times due to frequent small com-
munications but this distribution allows to process large co-
simulations.
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INTRODUCTION

Smart Grids, a Typical Complex System
We define complex systems as architectures involving a large
number of heterogeneous components in interaction. We con-
sider Smart Grids as an illustration: they are composed of
many, various electrical equipments scattered across a wide
geographical area from power plants to home meters, con-
nected across electrical networks and along with telecommu-
nication networks used to operate the electrical grid.

Pitfalls of Monolithic Simulation
Simulation is a valuable tool to study complex systems. But
it is difficult to achieve for two main reasons. First, the model
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of the system inherits its complexity; it involves expertise in
many different areas such as high-voltage systems, wireless
network protocols, etc. but each community is used to dif-
ferent tools, and might use different time models. Second,
since there are many components to simulate, a single com-
puting machine might not have enough RAM, or might take
too long to execute. What is needed is a simulation that is
both distributed and component-based.

Overview of the Functional Mockup Interface for Co-

Simulation
The automotive industry studied the multi-simulation chal-
lenge a few years ago in the MODELISAR European project,
and came up with a standard to ease the exchange of models
across modelling tools: the FMI (Functional Mockup Inter-
face) [1]. A model is packaged as a black box called FMU
(Functional Mockup Unit) which can be plugged as a com-
ponent into a larger model thanks to the standard interface
that provides access to states and derivatives of the included
equations. A solver might also be included in the FMU along
with the model. This is the type of FMUs (so-called ”CoSim-
ulation FMUs”) we are considering in our work. A multi-
simulation can be built using FMU blocks: during a ”macro-
step” of the simulation, each FMU independently simulates
part of the system; and at the end of each macro-step, the out-
puts from some FMUs provide new initial values (or inputs)
to other FMUs.

Objective
As implied by the name, the FMI only provides an interface
to the simulation units. It is up to the user to perform (in a
so-called ”master code”) the required output-input transfers
among FMUs, to choose the macro-step size and to order the
execution of each FMU. Some tools, such as Dymola, are able
to import FMUs, then let the user draw connections between
them and execute the resulting multi-simulation. Yet, they
are not multithreaded and consequently take no advantage of
multi-core computation nodes to speed-up the simulation; nor
do they support FMUs distributed among nodes to cope with
large simulations; besides, they are not open-source. Our ob-
jective is to provide an open-source solution that is both easy
to use and efficient.

Structure of this Article
Section ”Related Work” presents how DACCOSIM com-
pares to other distributed multi-simulation solutions. Section



”Principles and Architecture” sketches the structure of DAC-
COSIM and explains how it operates the distributed, con-
trolled multi-simulation of FMUs. Section ”Framework” de-
scribes how DACCOSIM empowers the user to transparently
exploit the architecture (functionalities and implementation
choices). Section ”Experimental Results” presents our test
case and reports the achieved performances. Lastly, the con-
clusion recaps our realization and outlines future directions
for our work.

RELATED WORK

Multi-simulation Error Control Challenges
At the opposite of a classical large monolithic simulator, a
FMI based co-simulation runs a graph of smaller simulators
encapsulated into FMUs, controlled by a Master process and
communicating only at the end of their time steps. This divi-
sion can lead to numerical errors on the output values, and [2]
and [3] propose different mathematical solutions to correct
the input values at the end of each time step. However, these
approaches lead to significant extra amounts of computations
and communications, and as of today the multi-simulations
achieved with DACCOSIM have not required this kind of reg-
ular corrections.

Solvers used by a FMU usually break one FMU time step into
numerous smaller internal time steps. But the FMU input val-
ues do not evolve during a FMU time step, because new val-
ues of the connected outputs are only routed at the end of each
FMU time step. In 2014 [4] proposed to achieve a contextual
extrapolation, function of past input values, polynomial ap-
proximations and of some knowledge about the simulation
evolution. We also implemented some degree of input ex-
trapolation computations in DACCOSIM, but in order to be
generic and easy to use, they do not require any particular
knowledge about the simulation and only use some facilities
of FMI 2.0 (see subsection ”Input Extrapolation”).

When connected FMUs form complex chains and include
algebraic equations, some order has to be identified and
respected when propagating values in the FMU graph, as
pointed out by [5]. We reused this approach in a more com-
plex algorithm (see subsection ”Co-Initialization”) to com-
pute all the initial input and output values in our FMU graph.

Speedup and Scalability Challenges
Independently from these numerical issues, some research
works focus on the parallelization and distribution of a
FMU graph, in order to speedup and/or to scale up the co-
simulations. A multithreaded FMI based co-simulation is in-
troduced in [4] and allows exploiting a multicore machine.
It achieves a supra-linear speedup greater than 8.9, running 5
threads on a 8-core machine including 2 processors (probably
using both more cores and more cache memory). However,
this solution is limited to multi-core machines and can’t be
deployed on a cluster.

A distribution of a FMU graph on a cluster can be achieved
by interfacing each FMU with a distributed HLA bus (the
”RTI”), initially designed to manage ”events” and event based
co-simulations [6]. The FMUs become components of the

HLA federation (the ”federates”) and the RTI is used as a
distributed middleware to communicate output values at each
step. This strategy has been experimented with in 2013 at the
Austrian Institute of Technology, where several distributed
versions of the Master algorithm controlling the FMUs were
developed. They focus on different objectives: parallel ex-
ecution of the distributed FMUs, or accuracy of the co-
simulation, or possibility to support different adaptive step
sizes in the different FMUs. This last objective allows reduc-
ing the number of events transmitted on the HLA bus limiting
in turn the extra cost of this distributed FMI co-simulation,
see [7]. These solutions rely on a fine usage of the numer-
ous HLA functionalities, and on more or less complex algo-
rithms achieving local controls of each FMU encapsulated in
each HLA federate [8, 9]. However, no performance mea-
surements of these FMI+HLA solutions were reported.

In 2014 the C2WT co-simulation framework developed at
the Vanderbilt University (USA), integrated some FMUs in
a HLA based co-simulation composed of event based simula-
tors, in order to develop hybrid co-simulations [10]. However,
the distributed control of the FMUs supported only constant
time steps and delayed some event processing at the end of
the FMU time steps which would not be acceptable in our
Smart Grid use cases.

In contrast, DACCOSIM has both a multithreaded and dis-
tributed architecture, in order to achieve speedup and scala-
bility.

PRINCIPLES AND ARCHITECTURE
The FMI standard calls ”master” the component in charge of
orchestrating the multi-simulation and it provides a sketch for
a simple, centralized master, with local FMUs. This archi-
tecture is not suited for large simulations though, as it does
not scale (all the data exchanges going through the master
result in a bottleneck, and the execution machine can be over-
loaded). In DACCOSIM, the master functionality is carried
out by a combination of three kinds of components distributed
across the various computation nodes. The architecture is pic-
tured in figure1.

Coordinated Variable Step
EachFMUWrapper is in charge of direct interactions with
a FMU and of data exchange with other FMUWrappers.
With a simple co-simulation schema, all the FMUs in the
co-simulation would perform a simulation step of sizeh; h
would be the same for all FMUs and would not vary during
the simulation. After stepi, FMUWrappers would exchange
data according to the user-defined connection graph and once
a FMU would have received all of its updated inputs, it would
perform stepi+1 . While this constant-step strategy is easy to
implement in a fully decentralized fashion, it rarely presents a
good computation/accuracy ratio: the choice of a small value
for h results in a large number of computation steps, while a
large value might fail to capture some variations in the simu-
lated variables.

For that reason, we choose to implement a variable-step strat-
egy. After the simulation of stepi, each FMU examines its
outputs and estimates how far they are from the exact value.



DACCOSIM implements two algorithms which do that: one
is based on the Euler’s method and a second one is based on
Richardson’s method. Other low-cost solutions (calculation-
wise) relying on variable Adam-Bashforth methods are also
suited for FMUs. Their principle is to store the values of the
derivatives at consecutive communication points to infer an
estimation at the next iteration. The explicit Euler scheme
implemented in DACCOSIM is merely a particular case of
Adam-Bashforth at order 1. If the (local) error is found to be
tolerable, the FMUWrapper will propose to perform the next
step with a bigger step size. Otherwise, the last step would
be cancelled and redone with a smaller step size value. The
rollback is made possible by the version 2.0 of FMI which in-
troduced the notion of FMU state, allowing the serialization
of the FMU state before performing a simulation step, and the
restoration of the saved state if necessary.

Suppose FMUA provides inputs for FMUB and initial step
value is 10. Att10, A decides it should redo the step with
step size of 6 and it does not send its outputs toB. B, on the
other hand, is satisfied with its outputs and only awaits up-
dated inputs fromA to perform its next step (fromt10 to t20).
When A reachest6, it could send its outputs toB but they
would not make much sense sinceB already advanced tot10
(and the next available outputs fromA could be time stamped
t12, which is not satisfactory either). To avoid this situation,
we introduce additional coordination in our architecture:if
one FMU decides to rollback, all the FMUs will do the same
and they will all redo the cancelled step with the same new
(smaller) step size. Conversely, if all the FMUs agree on a
bigger step size, it will be used for the next steps. To reduce
the number of messages involved in this global decision mak-
ing process, we introduce two additional components to the
architecture: on each computation node, a local master col-
lects the proposed step size from each FMU on the same node
and sends the local minimum value to the global master. The
global master in turn collects the proposed step sizes from
each local master and sends them back the global minimum
value, which they propagate back to the FMUWrappers.

node  #1 node  #2

control data

simulation data

Figure 1. Co-simulation components architecture.

A drawback of this strategy is that the system tends to align its
step size value to the most sensitive component, while some
components with larger time constants could easily provide
acceptable results using a larger step size. This results inad-
ditional, unnecessary computations. Researchers at LORIA-

INRIA are currently working on an alternate, Multi-Agent
System based architecture [11], which supports variable step
size, with different step sizes among the FMUs but with the
hypothesis that no rollbacks are necessary. We plan to jointly
investigate the differences it will cause both on performance
and on result accuracy.

Our architecture proposes 2 modes of operation regarding the
synchronization:

• In theoptimistic mode, a FMU starts to send its outputs be-
fore it receives the global decision (data communications
and control operations are executed in parallel); since in-
terrupting data communications in the case a rollback hap-
pens to be necessary would be too costly, this scheme is of
course more efficient in the event there are not too many
rollbacks.

• In theprudent mode, a FMU waits for the global decision
reception to transmit its outputs if necessary. Figure2 il-
lustrates this option.
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Figure 2. Co-Simulation ”prudent” synchronization.

Simulation data are not transmitted to the master hierar-
chy, rather data communications take place in a point-to-
point fashion, directly between the source and recipient
FMUWrappers. Subsection ”Communications” presents how
this is implemented, depending on whether communications
are local to a node or take place between separate nodes.

Input Extrapolation
FMI 2.0 offers the possibility to provide not only input values
for a FMU, but also derivatives for those values. It can be
used by the FMU internal solver to perform extrapolation of
input values and hopefully to provide more accurate results.
This possibility was included in DACCOSIM which transfers
not only output values from source FMUs to inputs of sink
FMUs but also first order derivatives. Of course the gain in
accuracy comes at the cost of increased computation time and
larger communications.



Co-initialization
One of the difficulties of the kind of distributed multi-
simulations we are considering is the setting of consistent
system-wide initial values for all the components. Our
co-initialization algorithm starts by building a global de-
pendency directed graph for the connected variables of the
FMUs. It uses the connections established by the user to
find external dependencies between the outputs from source
FMUs and the inputs from sink FMUs, and it uses depen-
dency information from the ModelDescription.xml file of a
FMU to find internal dependencies.

The key idea is that a topological sorting of the directed
acyclic graph (DAG) naturally gives the order in which the
variables must be initialized. Therefore, this led to studyhow
to convert a generic directed graph into a DAG. The solution
found is to build the graph of strongly connected components
(SCC). The resulting graph in which each SCC has been con-
tracted into a single vertex is a DAG1. We use Tarjan’s SCC
algorithm [12] to identify each SCC in the dependency graph
(runs in linear time). Following the order obtained with a
topological sorting on the contracted SCC graph:
1. for nodes which were not contracted, simply propagate

their values

2. for nodes which were contracted (they correspond to
cyclic dependencies), we solve the initialization prob-
lem using an iterative algorithm called JNRA (Jacobian-
based Newton-Raphson Algorithm) inspired by traditional
Newton-Raphson algorithms often used for electric load
flow computation; the calculation involves in this case the
following steps:

(a) For each connection it has with others FMUs, the
FMUWrapper computes the residual value and trans-
mits these values to the local master.

(b) Each local master builds the local Jacobian matrix of
all the connections involved in the cyclic dependency
being initialized, then transmits it to the global master.

(c) The global master aggregates the Jacobians, computes
the correction to apply to the inputs, and transmits this
correction value back to the local masters which in
turn propagate it towards the FMUs.

Those steps are repeated until the residual value is below a
given threshold.

In the most general case, a global dependency graph contains
several cyclic areas that may be seen as super-nodes acycli-
cally connected. A prototype algorithm is being developed
mixing local JNRA resolution combined with an acyclic out-
put propagation.

DACCOSIM allows the concurrent initialization of concur-
rent independent cyclic dependencies.

1The proof follows from the definition of SCC: a SCC is maximal
in that no additional edges or vertices can be included in the SCC
without breaking its property of being strongly connected.

State-Events Detection and Handling
We call ”state-event” the fact that a boolean or integer out-
put value changes2. In the current FMI version (2.0), the
notion of event is absent for Co-Simulation FMUs (it only
exists for Model-Exchange FMUs). As a result, events are
captured only at the end of a simulation step, which can have
detrimental consequences on the simulation if the step size
is large. Future FMI versions (2.1) are expected to handle
hybrid simulations (mixing continuous time and event-based
models). Meanwhile, DACCOSIM offers a solution to de-
tect state-events and to capture their instant of occurrence
as precisely as possible. DACCOSIM examines the value of
boolean and integer outputs and if a change is detected (com-
pared to the previous step), a rollback procedure is triggered.
Then the simulation is resumed with the smallest step size al-
lowed by the user, until the event is detected. Of course if
the boolean value changes an even number of times during
the step, the events get undetected. To avoid that situation
(until FMI 2.1 is released), the user must carefully choose the
maximum step size.

FRAMEWORK FUNCTIONALITIES AND BASES
Remember our objective is to propose an architecture which
can exploit distributed resources to perform efficient and ac-
curate multi-simulation of FMUs. In addition, it should be
easy to use and to maintain. This section gives an overview
of the tools offered to the user by our framework, and the
underlying technologies used.

User Modelling Interface
The user-visible side of DACCOSIM comes as an Eclipse
plug-in which allows the user to build its multi-simulationin
a user-friendly way. Using a form, the user describes his/her
computation nodes (OS, architecture, number of cores...).
Next the user can pick the different FMU archive files from
the file system he wants to see loaded in his palette. He can
then drop FMUs from the palette to his main design area
where he organizes the FMUs to model his complex system.
With simple mouse operations, the user connects an output
from a FMU to the input of another one. The user may also
discover the initial value for a variable (read from the Mod-
elDescription.xml file), and he can easily set a different value.
For now, the user also needs to associate each FMU with a
computation node. Figure3 gives a glimpse of the interface
offered to the user. It is rather similar to commercial tools
such as Dymola for instance and, while we have not tested
that yet, we expect a ”regular” user wouldn’t feel lost.

We used EMF (Eclipse Modeling Framework) to create the
metamodels, GMF (Graphical Modeling Project) to visualize
them as graphs, and GEF (Graphical Editing Framework) to
create the associated editors.

The framework performs a number of validations on the
graph. Next it generates the code for the various FMUWrap-
pers, local masters and for the global master. This step uses

2If a real output value reaching a given threshold needs to be consid-
ered as an event, we assume that this condition will be tested by the
model designer and that he will provide a boolean output to signal
that event.



Figure 3. Screenshot of the simulation configuration GUI.

a code generator based on Acceleo3. For now, the user is re-
sponsible for moving the generated files onto the appropriate
computation nodes and for launching the executions.

The framework also contains a tool which displays the de-
pendency graph and highlights cycles (if any) (see Figure4).
It can also be used to identify dependency chains in order to
avoid useless initializations (it is pointless to initialize two
variables in an algebraic chain as the value of the upstream
variable will lead the chain).

Figure 4. Screenshot of the dependency graph visualization.

DACCOSIM Library
Multithreaded Architecture
Each component in Figure1 runs on its own thread. Ad-
ditional threads are introduced to allow for some emission
and reception of data and control messages concurrently with
some computations, and to allow adaptive step methods to
compute auxiliary steps in parallel with the computation of
the current step.

Interacting with FMUs
We developed two versions of the library. In the first one,
to load the FMUs and interact with them, the FMUWrapper
code uses JavaFMI [13]4. Using java makes it easier to pro-
vide a solution for both Linux and Windows.

Along the last few months of this project, the FMI standard
was evolving from version 1 to version 2, and we exploit
3Eclipse Foundation, implementation of the OMG Model to Text
Language (MTL) standard.
4JavaFMI has been updated multiple times and is now compliant
with FMI v2-RC2. We use a slightly modified version for now.

some of the new functionalities. Tools used to generate FMUs
and to exploit them were not exempt of bugs and we’ve some-
time had difficulties to validate our code. That is one of the
reasons why we’ve also developed a C++ version of the li-
brary. Another reason is that C++ executes faster than Java.
This version is built upon the QTronic SDK [14] and only
runs on Windows.

Our preliminary tests first verified that both versions provide
the same simulation results. Since the Java version spends
some time in JNA calls (which of course are not necessary
with the C version, it can natively call the DLL embedded
inside the FMU), it is slower than the C version (by about
30%). As our FMUs are not computational intensive, the rel-
ative amount of time spent in JNA calls might not be as detri-
mental with heavier FMUs.

Communications
The technology used to exchange data between FMUWrap-
pers depends on their respective location. If 2 FMUs are not
on the same node, a TCP connection is used. If they are on
the same node, it is more efficient to use aninproc commu-
nication. To provide a rather similar interface for the devel-
oper in both cases, the ØMQ middleware is used. We have
found than the inproc implementation from JZMQ [15] per-
forms sometimes faster than a shared queue, and sometimes
not. We will further investigate that matter, and for the time
being, both intra-node communication modes are available in
DACCOSIM and it’s up to the developer to pick whichever
he prefers.

The communications from FMUWrappers to their local mas-
ter use a shared queue, and the communications between the
local masters and the global master use TCP connections (via
ØMQ); a local master holds references onto its FMUWrap-
pers so communications from local masters to FMUWrappers
are simply Java method calls.

Code Availability
The code is available for Windows and Linux, both 32
and 64-bit. It will be distributed under an open source
license on January 2016. It will be downloadable from
https://daccosim.foundry.supelec.fr.

EXPERIMENTAL RESULTS

Use Case and Testbeds Description
The test case used for this benchmark is a first, simplified
version of an industrial case and is provided by EDF R&D.
It represents heat transfers in a building composed of four
rooms, as a future component of a Smart Grid. The build-
ing envelope is subject to simple boundary conditions corre-
sponding to the outdoor air temperature (for the four zones)
and the internal heat gains (only for zones 2 and 3), see fig-
ure5.

The building envelope is described in nodal form and, for
the sake of simplicity, only the conductive and convective
heat transfers are considered. The walls are discretized in
one dimension, along their depth, and represented by a set
of heat capacitors and thermal conductors in Modelica lan-
guage. The thermal zones are represented by a single heat

https://daccosim.foundry.supelec.fr


Figure 5. Heat transfers use-case.

Figure 6. Simulation accuracy.

capacitor, meaning that the air temperature is considered uni-
form, using the so-called well-mixing assumption. It leadsto
an ODE system composed of 33 state variables. The whole
system is divided into components, which will be distributed
on threads: 4 models of rooms, 3 models of partition walls,
and 2 models for the boundary conditions ( outdoor air tem-
perature and internal heat gains).

In order to generate FMUs, the Modelica models should be
”oriented”, the acausal connectors are broken down into a set
of causal connectors (inputs and outputs) carrying tempera-
ture and heat flows. The FMUs were generated with Dymola
2015 for both Windows and Linux OS. The whole building
model can be assembled in DACCOSIM by connecting in-
puts and outputs of corresponding FMUs.

We conducted 2 kinds of benchmarks on 2 different testbeds.
First, we run some Dymola sequential simulations and some
multithreaded DACCOSIM multi-simulations on a laptop PC
at EDF with an Intel Core i7-3840QM processor at 2.8 GHz,
including 4 hyperthreaded physical cores (8 logical cores),
and with 32 GBytes of global DDR3 RAM on a 932 MHz
memory bus. This PC was running under Windows-7 64
bits. Second, we run some distributed benchmarks of DAC-
COSIM on the experimentation clusterCameronof SUP-
ELEC, with 16 nodes that are interconnected across a 10-Gbit
Ethernet switch, an OmniSwitch Alcatel 6900-X20-F, with
up to twenty 10-Gbit/s ports. Each node has an Intel Xeon
E5-1650 processor at 3.2 GHz, composed of 6 physical hy-
perthreaded CPU cores (12 logic cores), and is equipped with
8 GBytes of global DDR3 RAM on a 1600MHz memory bus.
This cluster is operated under Linux 64 bits, fedora core 16.

Simulation Results
Figure6 compares the simulation results obtained with differ-
ent configurations. The values used as a reference for evalu-
ating the simulation accuracy are computed by Dymola using

the Modelica model. Using a constant step size of 60 seconds
gives the same values as the Dymola reference. As expected,
increasing the step size to 300 seconds leads to slight inaccu-
racy. The graph also demonstrates the positive influence of
input extrapolation over the simulation accuracy.

The co-initialization algorithm implemented in DACCOSIM
was validated against the results of a load-flow (numerical
analysis of the power flow in an electrical grid) performed
with Dymola. We obtain the same results with our Newton-
Raphson-based algorithm, see figure7.

Figure 7. Co-initialization accuracy.

The event detection mechanism has been tested on a Medium
Voltage network equipped with EDF PWH protections. The
circuit breaker opening is triggered at1.08273 s according to
the Dymola reference. Table1 shows that DACCOSIM using
a variable step size is able to detect this event as preciselyas
when using a small constant step size, and as expected with a
better simulation time.

constant variable
step size step size

Breaker opening 1.0830 s 1.0835 s
Simulation time 1.90 s 1.53 s

Table 1. Adaptive step for event detection.

Performances
This section evaluates our solution from the execution time
perspective.

Performances on Multi-core Machine
Dymola is able to perform multi-simulations using FMUs. In
a first set of experiments, we’ve compared the execution time
of DACCOSIM C++ version on a single 8-core machine with
Dymola execution time (and a constant step size configura-
tion in each case). We’ve checked that the operational results
are similar. DACCOSIM exhibits a speedup of 3.5 (see ”mul-
tithreaded execution time” in figure8). The main explanation
is that as opposed to Dymola5, DACCOSIM is multithreaded
and thus it better exploits the 8-core architecture.

Performances on Cluster
We’ve also distributed our use case on up to 9 computation
nodes and compared how long it took compared to the ex-
ecution on a single node. We have tried several preliminary
52 Dymola instances can be run on the same machine and commu-
nicate with one another but each instance is monothreaded.



Figure 8. DACCOSIM execution time on cluster.

w/o inputs w inputs
interpol. interpol.

constant step (300s) 196.6 302.4
Table 2. Influence of input extrapolation on execution time.

distribution strategies: among others, we have tried to balance
the computation load, or to allocate the same node to FMUs
which communicate a lot, or to balance the number of con-
nections established by the FMUs on each node. We obtain
the following results:

• Figure8 shows the best execution time obtained on each
number of nodes for a constant step size configuration. The
FMUs do not perform huge computations (average doStep
lasts less than 4 ms) and in the chosen scenario they ex-
change a very large number of very small messages (data
part is no more than 34 bytes long). So, communication
times are mainly constrained by the latency of our cluster
network. As a result, we could not expect an interesting
speed-up. Only the 6, 7 and 8-node configurations exhibit
a speed-up slightly above 1. But at least if the simulation
was using too much RAM to run on a single PC, DAC-
COSIM could be used to execute it anyway.

• Since in this use case the communications account for a
large portion of the simulation time (because of their num-
ber), the strategy which leads to the best results is the one
which balances the number of connections (but this strat-
egy is only slightly better than the others).

• Richardson’s method doubles the number of computations
performed at each step, without impacting the communi-
cations. As a consequence, this case is more in favour
of an execution on a cluster. And indeed, we observe a
speedup close to 2 when increasing the number of compu-
tation nodes from 1 to 7. This advocates for better speedup
than the ones currently reported with constant step once
more computational intensive FMUs are available.

Figure 9 summarizes the best speed-up achieved on multi-
nodes and multi-cores platforms.

In a second set of experiments, we’ve repeated the exper-
iments from subsection ”Simulation Accuracy” and we’ve
measured the execution time. Table2 presents the execution
times obtained when turning on or off the input extrapolation.

Figure 9. Parallel and distributed speedup.

CONCLUSION AND PERSPECTIVES
Functional Mockup Units are an interesting opportunity to
build simulation of complex systems by assembling models
(and associated solvers) from various fields of expertise. In
addition, breaking a large model into smaller components
(and resulting FMUs) makes it more easy to distribute the
simulation across a set of computation nodes to scale-up
and/or speed-up the simulation.

DACCOSIM offers a GUI for the user to describe how to in-
terconnect FMUs in order to simulate his system. Once the
multi-simulation is configured, all the code required to or-
chestrate the FMUs is generated and ready to be deployed on
a cluster. The main contribution of this work is the ability to
perform parallel and distributed multi-simulation (as opposed
to the monothreaded simulation carried out by Dymola for in-
stance). Data exchange between FMUs is fully decentralized.
Our system supports both constant and variable step simula-
tion, and a light hierarchical control architecture was intro-
duced to coordinate the evolution of the step. DACCOSIM is
also able to perform the co-initialization phase in some cases.
Our tests show that this co-initialization phase, when appli-
cable, followed by the simulation of multiple FMUs using
DACCOSIM provides the same results as the Modelica model
in Dymola. Our benchmarks also confirm that our multi-
threaded architecture leads to shorter execution times than
the same FMU-based Dymola simulation (3.5 time slower on
our use-case). We achieved a speedup slightly above 1 on a
cluster, because the problem was not computation intensive
enough to be worth the distribution.

Future works are envisioned along multiple directions:

• Currently, the user needs to specify on which computation
resources each FMU should execute. Given the description
of available resources, the connection graph, and informa-
tion about each FMU, we could automatically compute a
deployment plan. This plan will ensure than FMUs avail-
able for Windows only will get allocated a Windows host
for instance, and that a pair of FMUs with a lot of connec-
tions will sit on the same host rather than being separated
on different machines. In addition, once the code is gen-
erated, we could provide a deployment tool to replace the
current user-designed shell scripts.

• Due to difficulties in obtaining FMUs, our test case was re-
duced to 9 ”small” FMUs. In the future we will experiment
with real, large, Smart-Grid centric use-cases.



• While FMI is suited for discrete time simulations, the High
Level Architecture (HLA [6]) is a reference for distributed
event-based multi-simulations. Some parts of a complex
system might be simulated using HLA-compliant compo-
nents while others would be provided as FMUs. We are
currently investigating how to efficiently assemble both
classes. [16] proposes a solution to automatically integrate
FMUs as federates. We expect our approach to differ in 3
ways: (1) a group of FMUs will be connected to the RTI
as a single federate within which rollbacks can occur, (2)
we will rely on JavaFMI to access the FMU data structures,
and (3) user action will be requested during preprocessing
in order to be able to semantically match all HLA events
and interactions to actions applied to the FMU.

• Once FMI 2.1 is released, we will modify our mechanism
to handle state-events.

• We are aware of on-going work using a multi-agent ap-
proach to perform a decentralized co-initialization at the
French IRIT lab. We intend to closely assess if it could pro-
vide an interesting alternative to the centralized Newton-
Raphson approach implemented in DACCOSIM.

• DACCOSIM lacks easy-to-use and efficient tools for on-
line and/or post-mortem results retrieval, storage and anal-
ysis. Designing and implementing such tools to perform
across distributed architectures require careful considera-
tion about distributed I/O. We plan to investigate this issue
in the medium term.
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