Optimizing computing and energy performances on
GPU clusters: experimentation on a PDE solver

S. Contassot-Vivier S. Vialle and T. Jost

Abstract—We present an experimental comparison be-
tween a synchronous and an asynchronous version of a same
PDE solver on a GPU-cluster. In the context of our exper-
iments, the GPU-cluster can be heterogeneous (different
CPUs and GPUs). The comparison is done both on perfor-
mance and energetic aspects.

I. MOTIVATIONS AND OBJECTIVES

Distributed architectures, like PC clusters, are a cur-
rent and extensible solution to implement and to execute
large and distributed algorithms and applications. How-
ever, modern PC clusters cumulate several computing ar-
chitectures in each node. A PC cluster node has several
CPU cores, each core supplies SSE units (small vector com-
puting units sharing the CPU memory), and it is easy to
install one or several GPU cards in each node (large vector
computing units with their own memory). So, different
kinds of computing kernels can be developed to achieve
computations on each node. CPU cores, SSE units and
GPUs have different computing and energy performances,
and the optimal solution depends on the particular hard-
ware features, on the algorithm and on the data size.

According to the algorithm used and to the chosen im-
plementation, communications and computations of the
distributed application can overlap or can be serialized.
Overlapping communications and computations is a strat-
egy that is not adapted to every parallel algorithm nor to
every hardware, but it is a well-known strategy that can
sometimes lead to serious performance improvements.

Moreover, although a bit more restrictive conditions ap-
ply on asynchronous parallel algorithms, a wide family of
scientific problems support them. Asynchronous schemes
present the great advantage on their synchronous coun-
terparts to perform an implicit overlapping of communi-
cations by computations, leading to a better robustness
to the interconnection network performances fluctuations
and, in some contexts, to better performances [1].

So, some problems can be solved on current distributed
architectures using different computing kernels (to exploit
the different available computing hardware), with syn-
chronous or asynchronous management of the distributed
computations, and with overlapped or serialized computa-
tions and communications. These different solutions lead
to various computing and energy performances according
to the hardware, the cluster size and the data size. The
optimal solution can change with these parameters, and
applications users should not have to deal with these par-
allel computing issues.

LORIA, University Henri Poincaré, Nancy, France
IMS SUPELEC group, and AlGorille INRIA project team, France
AlGorille INRIA project team, France

Our long term objective is to develop auto-adaptive
multi-algorithms and multi-kernels applications, in order
to achieve optimal runs according to a user defined crite-
rion (minimize the execution time, the energy consump-
tion, or minimize the energy delay product...). However,
the development of this kind of auto-adaptive solutions re-
mains a challenge. The first step of our approach is to
develop and experiment different versions of some classical
HPC applications. Then, we will attempt to identify per-
tinent benchmarks, performance models and generic opti-
mization rules. They will be the foundations of an auto-
adaptive strategy for multi-algorithms and multi-kernels
applications. The SPRAT framework [5] investigates this
approach to dynamically choose CPU or GPU kernels at
runtime, but considers only one computing node. We
aim at being able to dynamically choose between CPU or
GPU kernels and between synchronous or asynchronous
distributed algorithms, according to the nodes used in an
heterogeneous CPU+GPU cluster.

This article focuses on the development and experiment
of a PDE solver on a heterogeneous GPU cluster, using
synchronous or asynchronous distributed algorithms. We
have already shown in [6] that the use of GPUs for the in-
ner linear solver provides substantial gains. In this paper,
we aim at finding the best communication scheme (sync
or async) and implementation solution (CPU or GPU) ac-
cording to a given context of GPU cluster (number of ma-
chines and homogeneity or heterogeneity). Both comput-
ing performances and energy consumption have been mea-
sured and analyzed in function of the cluster size and the
cluster heterogeneity. Finally, different optimal solutions
have been identified in this multi-parameter space: GPU
cluster always appears more efficient up to 16 nodes and
probably up to 33 nodes (see section A), but more experi-
ments are required to validate this hypothesis. Moreover,
depending on the respective numbers of fast nodes and
slow nodes used, the most efficient solution will be either
synchronous or asynchronous (see section B).

Section IT introduces the synchronous and asynchronous
algorithms of our distributed PDE solver, then sections I1I
and IV introduce the heterogeneous GPU cluster we used
and the experimental performance we measured. Section
V summarizes our results and suggests the next steps of
this research project.

II. DISTRIBUTED PDE SOLVER ALGORITHM

Our benchmark application performs the resolution of
PDEs using the multisplitting-Newton algorithm and an
efficient linear solver. It is applied to a 3D transport model,
described in [3], which simulates chemical species in shal-

low waters. To achieve this, the PDE system representing
the model is linearized, discretized and its Jacobian ma-
trix is computed (on the CPU). The Euler equations are
used to approximate the derivatives. Since the size of the
simulation domain can be huge, the domain is distributed
among several nodes of a cluster. Each node solves a part of
the resulting linear system and sends the relevant updated
data to the nodes that need them. The general scheme is
as follows:
o Rewriting of the problem under a fixed point problem
formulation:
x=T(z),z € R where T'(x) =z — F'(x) " F(x)
= We get F/ x AX = —F with F’ a sparse matrix
o F is distributed over the available nodes
o Each node computes a different part of AX using the
Newton algorithm over its sub-domain
o F'is updated with the entire X vector
e X is itself updated via messages exchanges between
the nodes
In this process, most of the time is spent in the linear
solver required for the computation of AX. So, it was
implemented on GPU, using the biconjugate gradient al-
gorithm. This algorithm was chosen because it performs
well on non-symmetric matrices (on both convergence time
and numerical accuracy), it has a low memory footprint,
and it is relatively easy to implement.

A. GPU implementation of the linear solver

As GPUs have currently a limited amount of memory,
the data representation is a crucial factor which requires
very special care. Thus, our sparse matrices are stored
in a compact way. Moreover, the memory accesses are
treated carefully. To get coalesced memory accesses, our
data structures are padded so that every line of a matrix
starts on a multiple of 16 elements. When coalesced reads
cannot be achieved in a vector, 1D texture cache is used
to hide latencies as much as possible. We also use shared
memory as a cache memory whenever it is possible in order
to avoid costly slower reads to the device global memory.
The different kernels used in the solver are divided to reuse
as much data as possible at each call, hence minimizing
transfers between the global memory and the registers.

B. Synchronous and asynchronous aspects

The asynchronism is inserted in the process depicted
above at the level of the data exchanges of the X vector
between the inner iterations performed within each time-
step of the simulation. One synchronization is still required
between each time step, as illustrated in Fig. 1. At this
moment, the Jacobian matrix is locally updated for the
computation of the next time-step.

The communications management is a bit more com-
plex than in the synchronous version as it must enable
sending and receiving operations at any time during the
algorithm. Although the use of non-blocking communi-
cations seems appropriate, it is not sufficient, especially
concerning receptions. This is why it is necessary to use
several threads. The principle is to use separated threads

Simulation
Time step

Simulation
Time step

Processor 1

Processor 2

Time >

Fig. 1.
tation

Asynchronous iterations inside each time step of the compu-

to perform the communications, while the computations
are continuously done in the main thread without any in-
terruption, until convergence detection. In our version,
we used non-blocking sendings in the main thread and an
additional thread to manage the receptions. It must be
noted that in order to be as reactive as possible, some
communications may be initiated by the receiving thread
(for example to send back the local state of the unit).

Subsequently to the multi-threading, the use of mutex
is necessary to protect the accesses to data and some vari-
ables in order to avoid concurrency and potentially inco-
herent modifications.

Another difficulty brought by the asynchronism comes
from the global convergence detection. Some specific mech-
anisms must replace the simple global reduction of local
states of the units to ensure the validity of the detection [2].
The most general scheme may be too expensive in some
simple contexts such as local clusters. So, when some
information about the system are available (for example
bounded communication delay), it is often more pertinent
to use a simplified mechanism whose efficiency is better and
whose validity is still ensured in that context. Although
both general and simplified schemes have been developed
for this study, the performances presented in the following
section are related to the simplified scheme which gave the
best results.

III. TESTBED INTRODUCTION

The platform used to conduct our experiments is a set of
two clusters hosted by SUPELEC in Metz. The first one is
composed of 15 machines with Intel Core2 Duo CPUs run-
ning at 2.66GHz, 4GB of RAM and one Nvidia GeForce
8800GT GPU with 512MB per machine. The operating
system is Linux Fedora with CUDA 2.3. The second cluster
is composed of 17 machines with Intel Nehalem CPUs (4
cores + hyperthreading) running at 2.67GHz, 6GB RAM
and one Nvidia GeForce GTX 285 with 1GB per ma-
chine. The OS is the same as the previous cluster. As
the 8800GTs do not support double precision arithmetic,
our program has been compiled with the sm_11 flag for all
the experiments.

Concerning the interconnection network, both clusters
use a Gigabit Ethernet network. Moreover, they are con-
nected to each other and can be used as a single heteroge-
neous cluster via the OAR management system.

Short Names: OPTIMIZING COMPUTING AND ENERGY PERFORMANCES ON GPU CLUSTERS

n CPU-cores/node —+—
& 1 GPU/node —->--
L 1E27 1 :
=
=
8 1E1 :
i s
1E0 | | |
1 2 4 8 16
Number of nodes
Fig. 2.

8 T T T

Speedup GPU vs CPU —+—

GPU cluster vs CPU cluster

1 i i i
1 2 4 8 16
Number of nodes

Execution time of our PDE solver benchmark (synchronous version) on the multicore CPU cluster and on the GPU cluster (left),

and speedup and energetic gain of the GPU cluster compared to the multicore CPU cluster (right)

— 2000-2500

T = 1500-2000

— ®1000-1500
~~__ m500-1000

2500 —

= 0!59#)

2000

1500

T-exec(s)

1000

500

Nb of fast
nodes

. 2000-2500
T 1500-2000
T =1000-1500
- T m500-1000
2500 o =5
-~ - - =m0
2000
=
$ 1500
g
P
= 1000
500

Nb of fast

10 ' nodes

Fig. 3. Execution time of our PDE solver on a 100 x 100 x 100 problem, on the heterogeneous GPU cluster, with synchronous (left) and

asynchronous (right) schemes

=200-220

i = 180-200
= 160-180

= =140-160

=) =120-140

5 220

B 200 - =100-120

5 180 -

E

&

Z 120

] 1000

Nb of fast
nodes

m 200-220
= 180-200
m 160-180
= 140-160
m 120-140
m100-120

Energy consumption (W.h)

)
8 11 Nb of fast
™~ nodes

14 17

Fig. 4. Energy consumption of our PDE solver on a 100 x 100 x 100 problem, on the heterogeneous GPU cluster, with synchronous (left)

and asynchronous (right) schemes

IV. EXPERIMENTS
A. GPU cluster vs CPU cluster

Figure 2 (left) shows the execution times of our PDE
solver benchmark (in synchronous mode) using either the
multicore CPUs of the cluster (all the CPU cores on each
node) or using the GPUs of the cluster (one CPU core and
one GPU per node). We used only the most recent nodes of
our cluster, composed of Intel Nehalem CPUs and Nvidia
GeForce GTX 285 GPUs, appeared on the market approx-
imately at the same date. Our benchmark runs faster with

the GPUs, scaling up to 16 nodes, and consumes less en-
ergy (not shown on Fig. 2).

However, Fig. 2 (right) shows the performance and ener-
getic gains of the GPU cluster vs the multicore CPU clus-
ter. It can be seen that substantial gains are achieved with
the use of GPUs instead of CPUs. But, a slight decrease
appears when the number of processors increases. This
is due to the fact that computation times are smaller on
GPUs whereas the inter-node communication times remain
unchanged and an additional overhead is induced by the
data exchanges between GPUs and CPUs. Thus, the ratio

- 21
- 19
17
15
13
11

m19-21
17-19
15-17
13-15
m11-13
H9-11
m7-9
m5-7
o 3-5
m1-3

Sync. speedup vs sequential

[I ¥ BN

Nb of fast nodes

m19-21
17-19
15-17
13-15
m11-13
m9-11
m7-9

m5-7

Sync. speedup vs sequential

m3-5

mi1-3

1 3 = 7 9 11 13 15 17
Nb of fast nodes

I i; 19-21
o e 17-19
- 15-17
13 13-15
= =11-13
mo-11
m7-9
"5-7
m3-5
=13

Async. speedup vs sequential

oW oo~

' 17
315

1
g 11
Nb of fast nodes

m19-21
17-19
15-17
13-15
m11-13
mo-11
m7-9

m5-7

Async. speedup vs sequential

m3-5

m1-3

1 3 5 7 9 11 13 15 17
Nb of fast nodes

Fig. 5. Speedup of our PDE solver on a 100 x 100 X 100 problem, on the heterogeneous GPU cluster, with synchronous (left) and asynchronous

(right) schemes, compared to the sequential version

of communications over computations is larger on the GPU
cluster. This results in a regular decrease of the speedup
and energetic gain of the GPU cluster compared to the
CPU cluster: GPU cluster supremacy decreases when the
number of nodes increases.

B. Synchronous vs asynchronous run on heterogeneous
GPU cluster

The first aspect addressed in our experiments is the evo-
lution of the execution times according to the number of
machines taken from the two available GPU clusters. As
can be seen in Fig. 3, both surfaces are quite similar at
first sight. However, there are some differences which are
emphasized by the speedup distribution according to the
sequential version, presented in Fig. 5. There clearly ap-
pears that the asynchronous version provides a more reg-
ular evolution of the speedup than the synchronous one.
This comes from the fact that the asynchronous algorithm
is more robust to the degradations of the communications
performances. Such degradations appear when the num-
ber of processors increases, implying a larger number of
messages transiting over the interconnection network and
then a more important congestion. Thus, as in the pre-
vious comparison between GPU and CPU versions, the
asynchronism puts back the performance decrease due to
slower communications in the context of a heterogeneous
GPU cluster.

In order to precisely identify the contexts of use in which
the asynchronism brings that robustness, we have plotted
in Fig. 6 (left), the speedup of the asynchronous GPU al-
gorithm according to its synchronous counterpart.

First of all, it can be seen that asynchronism does not
always brings a gain. This is not actually a surprise be-
cause when the ratio of communications time over compu-
tations time is negligible, the impact of communications
over the overall performances is small. So, on one hand
the implicit overlapping of communications by computa-
tions performed in the asynchronous version provides a
very small gain. On the other hand, the asynchronous
version generally requires more iterations, and thus more
computations, to reach the convergence of the system. Fi-
nally, the computation time of the extra iterations done in
the asynchronous version is larger in this context than the
gain obtained on the communications side. That context
is clearly visible on the left part of the speedup surface,
corresponding to a large pool of slow processors and just a
few fast processors.

As soon as the communication-times to computation-
times ratio becomes sensible, which is the case either when
adding processors or taking faster ones, the gain provided
by the asynchronism over the communications becomes
more important than the iterations overhead, and the asyn-
chronous version becomes faster. Unfortunately, it can be
observed on Fig. 6 (left) that the separation between those
two contexts is not strictly regular and studying the rela-
tive speedup map would be necessary in order to deduce a
general rule to apply on this kind of PDE solver.

C. Energetic aspects

Concerning the energetic aspect, the first point concerns
the gains obtained by the use of GPUs in place of CPUs,
given in Fig. 2 (right). It can be seen that those gains

Short Names: OPTIMIZING COMPUTING AND ENERGY PERFORMANCES ON GPU CLUSTERS 5

14
12
= -

10 1,1-1,2

= 1,0-1,1

= 0,9-1,0

Speedup asyncvs sync (Tsync/Tasync)

Nb of fast nodes

14

12

10

h N
o
|
=N

=1,1-1,2
8 =1,0-1,1
’ =0,9-1,0
6
H i
4 1

Energy gainasyncvs sync (E-sync/E-async)

'S
1
B

1 3 5 7 9 11 13

[y
[9)]
[y
~

Nb of fast nodes

Fig. 6. Speedup (left) and energy gain (right) of asynchronous version vs synchronous version, on our heterogeneous GPU cluster

closely follow those of the speedup, with a nearly constant
factor. That similarity of the two curves is quite obvious as
the energy spent directly depends on the time of use. How-
ever, the vertical offset between the curves is a bit more
surprising. This comes from the fact that the GPU and
the CPU have different energy consumptions and compu-
tational powers at full load. Although the current GPUs
have generally a larger consumption than the CPUs, they
also have a larger computational power, and that last ratio
is greater than the first one (% < %) at full load.
Moreover, the total amount of energy used by one node is
not fully spent in computations. In fact, two parts can be
identified: the one actually used for the computations and
another one for the system (minimal energy at idle time).
So, the relative ratio of the system part over the compu-
tation part is lower when using a GPU than when using
a CPU. Those two factors explain why the GPU version
obtains a better energetic efficiency than the CPU one.

In order to get the complete energetic behavior of the
couple algorithmic scheme - cluster, we have measured the
energy consumption in function of the number of nodes
and the algorithmic scheme used. The results are pre-
sented in Fig. 4. The first interesting point is that the
energy consumption does not follow the performance be-
havior. This is explained by the performance speedup
which follows a sub-linear trajectory when adding nodes in
the system (see Fig. 5). Thus, multiplying the number of
nodes by two does not reduce the computation time by two
and the global energetic efficiency of the cluster decreases
when the number of nodes increases. The second interest-
ing point is the comparison between the synchronous and
asynchronous energetic surfaces. As for the performances,
asynchronism tends to be more robust as the surface is
smoother and globally lower. However, here again there is
no simple separation between the synchronous and asyn-
chronous gains, as illustrated in Fig. 6 (right).

So, as for the performances, the study of such ener-
getic gain maps will be necessary to design an optimization
strategy for this kind of computing problem.

V. CONCLUSION AND PERSPECTIVES

A complete experimental study of a parallel PDE solver
on a heterogeneous GPU cluster has been presented. The
results show that GPUs are interesting both in terms of
performance and energy consumption when the number
of processors is not too high. Also, our experiments have
pointed out that asynchronous algorithmic tends to bring a
better scalability in such heterogeneous contexts of multi-
level parallel systems, on the energetic side as well as on
the performance one.

Finally, that study has also pointed out that the opti-
mal choice of algorithmic scheme and hardware to use is
not simple and requires a deeper study of the performance
and energetic maps. Those results are a first step towards
the design of performance and energetic models of paral-
lel iterative algorithms on GPU clusters. In order to help
this task of optimal choice, we also plan to study the En-
ergy Delay Product [4] that allows to track a compromise
between computational and energy efficiency.

REFERENCES

[1] J. Bahi, S. Contassot-Vivier, and R. Couturier. Evaluation of
the asynchronous iterative algorithms in the context of distant
heterogeneous clusters. Parallel Computing, 31(5):439-461, 2005.

[2] J. Bahi, S. Contassot-Vivier, and R. Couturier. An efficient and
robust decentralized algorithm for detecting the global conver-
gence in asynchronous iterative algorithms. In 8th International
Meeting on High Performance Computing for Computational
Science, VECPAR’08, pages 251-264, Toulouse, June 2008.

[3] J.Bahi, R. Couturier, K. Mazouzi, and M. Salomon. Synchronous
and asynchronous solution of a 3D transport model in a grid com-
puting environment. Applied Mathematical Modelling, 30(7):616—
628, 2006.

[4] R. Gonzalez and M. Horowitz. Energy dissipation in general
pupose microprocessors. IEEE Journal of solid-state circuits,
31(9), September 1996.

[5] K. Sato H. Takiza and H. Kobayashi. SPRAT: Runtime proces-
sor selection for energy-aware computing. In Cluster Computing,
2008.

[6] T. Jost, S. Contassot-Vivier, and S. Vialle. An efficient multi-
algorithms sparse linear solver for GPUs. In EuroGPU mini-
symposium of the International Conference on Parallel Comput-
ing, ParCo’2009, pages 546-553, Lyon, September 2009.

