GP-GPU

TD1: Dense matrix product on GPU using registers

Stéphane Vialle

Stephane.Vialle@centralesupelec.fr http://www.metz.supelec.fr/~vialle

Ex1: 2D-grid of 1D-blocks

Product of matrices of $\boldsymbol{n} \times \boldsymbol{n}$ elements

- 1D-blocks of B_{x} threads (kernel k0)
- With: $n=k . B_{x}(k \in \mathbb{N}) \quad$ B

1 - Design the paving of matrix C (2D-grid of 1D-blocks)

Sub-matrix computed by one 1D-block of B_{x} threads

Ex1: 2D-grid of 1D-blocks

Q1.1 - Definition of the 2D-grid of 1D-blocks
Q1.2 - Definition of the computing kernel
Q1.3 - Analysis of the coalescence
Q1.4 - Number of global memory accesses (not including cache memory):

- Compute the total number of memory accesses requested by the threads

$$
N_{\text {RAM accesses }}^{\text {requested by all threads }}=\left(n_{\text {threads }} \cdot n_{\text {RAM accesses }}^{\text {requested by } 1 \text { thread }}\right)
$$

- Compute the total number of memory accesses achieved by the warps

When accesses are coalescent: 1 warp accesses 32 data in $t_{1 \text { RAM access }}$
Model : $T_{\text {RAM access }}^{\text {total }}=N_{\text {RAM accesses }}^{\text {achieved by all warps }} . t_{1 \text { RAM access }}$

Ex1: 2D-grid of 1D-blocks - Boundaries

Product of matrices of $\boldsymbol{n} \times \boldsymbol{n}$ elements

- 1D-blocks of B_{x} threads (upgraded kernel k0)
- With: $n \neq k . B_{x}, k \in \mathbb{N}$

1 - Design the paving of matrix C (2D-grid of 1D-blocks)

Sub-matrix computed by one 1D-block of B_{x} threads

Ex1: 2D-grid of 1D-blocks - Boundaries

Q1.5 - Upgrade of the 2D-grid of 1D-blocks
Q1.6 - Upgrade of the computing kernel

Ex2: 2D-grid of 2D-blocks

Product of matrices of $\boldsymbol{n} \times \boldsymbol{n}$ elements

- 2D-blocks of $B_{x} \times B_{y}$ threads (kernel k1)
- With: $n=k_{x} \cdot B_{x}=k_{y} B_{y},\left(k_{x}, k_{y}\right) \in \mathbb{N}^{2}$

1 - Design the paving of matrix C (2D-grid of 2D-blocks)

Sub-matrix computed by one 2D-block of $B_{x} \times B_{y}$ threads

Ex2: 2D-grid of 2D-blocks

Q2.1 - Definition of the 2D-grid of 2D-blocks
Q2.2 - Definition of the computing kernel
Q2.3 - Analysis of the coalescence
Q2.4 - Number of global memory accesses (not including cache memory):

- Compute the total number of memory accesses requested by the threads

$$
N_{R A M \text { accesses }}^{\text {requested by all threads }}=\left(n_{\text {threads }} \cdot n_{R A M \text { accesses }}^{\text {requested by } 1 \text { thread }}\right)
$$

- Compute the total number of memory accesses achieved by the warps

When accesses are coalescent: 1 warp accesses 32 data in $t_{1 \text { RAM access }}$
Model : $T_{\text {RAM access }}^{\text {total }}=N_{\text {RAM accesses }}^{\text {achieved by all warps }} . t_{1 \text { RAM access }}$

TECH
 Ex2: 2D-grid of 2D-blocks - Boundaries

Product of matrices of $\boldsymbol{n} \times \boldsymbol{n}$ elements

- 2D-blocks of $B_{x} \times B_{y}$ threads (upgraded kernel k1)
- With: $n \neq k_{x} \cdot B_{x}, n \neq k_{y} B_{y},\left(k_{x}, k_{y}\right) \in \mathbb{N}^{2}$

1 - Design the paving of matrix C
(2D-grid of 2D-blocks)

Ex2: 2D-grid of 2D-blocks - Boundaries

Q2.5 - Upgrade of the 2D-grid of 2D-blocks
Q2.6 - Upgrade of the computing kernel

TD1 : Dense matrix product on GPU using registers

Fin

