

• Cost minimization. No need for further software components.

- Heterogeneous processing models in the same application.
 - Read a stream of data.
 - Apply machine learning algorithms.
 - Uses SQL to analyze the results.

Big Data Polytech Paris-Saclay, 2023 10 / 64

Control how tasks are distributed across a cluster.

• Spark can also use other cluster managers.

• Spark provides its own standalone cluster manager.

Big Data Polytech Paris-Saclay, 2023 11 / 64

Lecture 1 – Apache Spark Introduction to Spark	Lecture 1 – Apache Spark Introduction to Spark		
Using Spark	Who uses Spark		
Interactive mode Using a command-line interface (CLI) or shell . • Python and Scala shell. • SparkSQL shell. • SparkR shell.	 Several important actors use Spark: Amazon. eBay. Log transaction aggregation and analytics. Groupon. 		
	• Stanford DAWN. Research project aiming at democratizing AI.		
Data processing applications	a. Trin∆dvisor		
Building an application by using the Spark APIs .			
 Scala (Spark's native language). 	• Yahoo!		
Python.			
• Java.	Full list available at http://spark.apache.org/powered-by.html		
Gianluca Quercini Big Data Polytech Paris-Saclay, 2023 12 / 64	Gianluca Quercini Big Data Polytech Paris-Saclay, 2023 13/64		

ecture 1 – Apache Spark Introduction to Spark

Spark application

- Spark application: set of independent processes called **executors**.
- Executor run computations and store the data for the application.
- Executors are coordinated by the driver.

Spark application execution

- The driver is launched and creates the SparkContext object.
- The SparkContext obtains executors from the cluster manager.

che Spark Introduction to Spark

- The driver sends the user's code to the executors.
- The driver assigns each executor a set of tasks.
- A task is a computation on a chunk of data.

- Apache Spark Introduction to Spark

Spark application execution

- Applications are **isolated** from one another.
 - Each application has its own SparkContext.
 - An executor only runs tasks of one application.
 - A driver only schedules tasks for one application.
 - Data cannot be shared across different applications.
- Spark is **agnostic** to the underlying cluster manager.
- The driver listens to incoming connections from the executors on a network port.
- The driver should be in the same local network as the executors.

Two different Spark applications can still share data through an external storage system (e.g., a database or HDFS files).

Big Data

Polytech Paris-Saclay, 2023 16 / 64

Spark programming

Two options exist to write a Spark application:

- Low-level programming, using operations on a low-level data structure called Resilient Distributed Dataset (RDD).
- **High-level** programming, using high-level libraries, such as SparkSQL and Structured Streaming.

 ${\rm I\!I\!I\!S}$ In this lecture, we'll focus on low-level programming to better understand the inner workings of Spark.

Big Data Polytech Paris-Saclay, 2023 17 / 64

rk Programming with Resilient Distributed Datasets (RDDs)

Lecture 1 – Apache Spark Programming with Resilient Distributed Datasets (RDDs)

RDDs created with parallelize

- Local mode: number of cores on the local machines.
- Cluster mode: total number of cores on all executor nodes, or 2, whichever is larger.

• Number of HDFS blocks in the input file, or 2, whichever is larger.

Big Data Polytech Paris-Saclay, 2023 23 / 64

re 1 – Apache Spark Programming with Resilient Distributed Datasets (RDDs) RDD transformations: flatMap flatMap is used instead of map when the function f returns a list and we need the results to be flattened. bda x: x.split()) flatMap(la nbda x: x.split()) map(la rem ; ipsum ; dolor ; sit ; net ; consectetur ; ipiscing ; elit ; sed ; do ; usmod ; tempor ; incididu orem, ipsum, dolor, sit, net]; [consectetur, dipiscing, elit]; [sed, do usmod. tempor incididu rem ipsum dolor sit amet insectetur adipiscing elit ; d do eiusmod tempor d do eiu ut ; labore ; et ; dolore ; magna ; aliqua ; Ut ; enim ; ad ; minim ; veniam ; quis ; im ad minim mco ; laboris si ; ut ; aliquip ; ex ; ea ; ommodo ; consequat ; uis ; aute ; irure ; dolor si ut aliquip ex ea mmodo conseguat ; Duis ii, ut, aliquip, ex, ea, nmodo, consequat] iis, aute, irure, dolor] ite irure dolor ; reprehenderit ; in ; luptate ; velit ; esse ; lum ; dolore ; eu ; fugiat ; lla : pariatur n reprehenderit in voluptate elit ; esse cillum dolore eu ugiat nulla pariatur lerit, in, it] ; [esse, , eu, fugiat illum, dolore ulla pariatur Polytech Paris-Saclay, 2023 26 / 64 Big Data

RDD transformations: filter

filter() takes in a **predicate** p and a RDD $< x_i | 0 \le i \le n >$; returns a **new RDD** $< x_i | 0 \le i \le n$, $p(x_i)$ is true >

1 - Apache Spark Programming with Resilient Distributed Datasets (RDDs)

Big Data Polytech Paris-Saclay, 2023 27 / 64

Partition 0	2;5;6;7;8;11;	filter(lambda x: x>3)	5;6;7;8;11;13
Partition 1	4;5;2;3;4;5;8	filter(lambda x: x>3) ►	4;5;4;5;8
Partition 2	1:4:3:2:4:5:6	filter(lambda x: x>3)	4:4:5:6
Partition 3	0.4.5.0.0.4.0	filter(lambda x: x>3)	4.5.4.9
raiuu0113	2;4;5;2;3;4;8	· · · · · · · · · · · · · · · · · · ·	4;5;4;8

Lecture 1 – Apache Spark Programming with Resilient Distributed Datasets (RDDs)

RDD transformations: union

union() takes in two RDDs and returns a **new RDD** containing the items of the first and second RDD **with repetitions**.

RDD transformations: distinct

distinct() takes in one RDD and returns a **new RDD** containing the items of the input RDD **without repetitions**.

Lecture 1 – Apache Spark Programming with Resilient Distributed Datasets (RDDs)

About data shuffling ★

Which partition does the element 23 belong to in the RDD obtained after applying the transformation distinct?

- Apache Spark Programming with Resilient Distributed Datasets (RDDs)

RDD actions: count

Apache Spark Programming with Resilient Distributed Datasets (RDDs)

Big Data Polytech Paris-Saclay, 2023 41 / 64

Big Data Polytech Paris-Saclay, 2023 42 / 64

cture 1 – Apache Spark Programming with Resilient Distributed Datasets (RDDs)

Key-value RDDs transformations: reduceByKey

reduceByKey takes in a RDD with (K, V) pairs and a function f and returns a **new RDD** of (K, V) pairs where the values for each key are aggregated using f, which must be of type $(V, V) \rightarrow V$.

e 1 - Apache Spark Programming with Resilient Distributed Datasets (RDDs)

Key-value RDDs transformations: reduceByKey The input RDD has a certain number of partitions *n*. No assumption can be made on which elements belong to which partition. The RDD returned by reduceByKey is hash partitioned. Each item belongs to a precise partition. The partition number *p* of a pair (*K*, *V*) is derived as follows:

e 1 - Apache Spark Programming with Resilient Distributed Datasets (RDDs)

 $p = hashCode(K) mod num_partitions$

Lecture 1 - Apache Spark Programming with Resilient Distributed Datasets (RDDs) Key-value RDDs transformations: groupByKey

groupByKey takes in a RDD with (K, V) pairs and returns a **new RDD** of (K, Iterable < V >) pairs.

ianluca Quercini

Big Data Polytech Paris-Saclay, 2023 48 / 64

ache Spark Programming with Resilient Distributed Datasets (RDDs)

Big Data Polytech Paris-Saclay, 2023 47 / 64

Key-value RDDs transformations: mapValues

mapValues takes in a RDD with (K, V) pairs and a function f and returns a **new RDD** where the function f is applied to each value V (keys are not modified).

RDD lineage: stages

e 1 - Apache Spark Spark execution model

<section-header>RDD lineage: tasks

ache Spark Spark execution model

RDD lineage: fault tolerance

e 1 – Apache Spark Spark execution model

Lazy evaluation

• In Spark, transformations are lazily evaluated.

Spark execution model

Big Data Polytech Paris-Saclay, 2023 57 / 64

Persisting the data

- Persisting the data means caching the result of the transformations.
 Either in main memory (default), or disk or both.
- If a node in the cluster fails, Spark **recomputes** the persisted partitions.
 - We can **replicate** persisted partitions on other nodes to recover from failures without recomputing.

lines = sc.textFile("./data/logfile.txt") exceptions = lines.filter(lambda line : "exception" in line) exceptions.persist(StorageLevel.MEMORY_AND_DISK) nb_lines = exceptions.coult() exceptions.collect()

- persist() is called right before the first action.
- persist() does not force the evaluation of transformations.
- unpersist() can be called to evict persisted partitions.

Big Data Polytech Paris-Saclay, 2023 62 / 64

References

• Karau, Holden, et al. *Learning spark: lightning-fast big data analysis.* O'Reilly Media, Inc., 2015. • Clocker

Big Data Polytech Paris-Saclay, 2023 63 / 64

Playing with transformations and actions

Lecture 1 – Apache Spark References

Notebook available on Google Colab Click here

 $^{\rm I\!S\!S}$ Select File \to Save a copy in Drive to create a copy of the notebook in your Drive and play with it.

Gianluca Quercini Big Data Polytech Paris-Saclay, 2023 64 / 64