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General information

Organization of the course

MapReduce and Spark.

Spark programming.

SQL and NoSQL.

MongoDB practice.

Hadoop technologies.

Scaling.
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General information

Class material

Available online
https://tinyurl.com/p7jb5wra

Click here

Slides of the lectures.

Tutorials and lab assignments.

References (books and articles).
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General information

Evaluation

Lab assignments. Lab assignments 1 and 2 will be graded.

Lab assignment 1. Spark programming
Lab assignment 2. MongoDB
Submission: Code source + written report.

Written exam. 1 hour.

Spark programming.
Data modeling in MongoDB.
Querying in MongoDB.
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General information

Contact

Email: gianluca.quercini@centralesupelec.fr

Email: stephane.vialle@centralesupelec.fr
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Lecture 1 – Apache Spark Objectives

What you will learn

In this lecture you will learn:

What Spark is and its main features.

The components of the Spark stack.

The high-level Spark architecture.

The notion of Resilient Distributed Dataset (RDD).

The main transformations and actions on RDDs.
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Lecture 1 – Apache Spark Introduction to Spark

Apache Spark

Definition (Apache Spark)

Apache Spark is a distributed computing framework designed to be fast
and general-purpose. Source

Main features

Speed. Run computations in memory (Hadoop relies on disks).

General-purpose. Different workloads in the same system.

Batch applications, iterative algorithms.
Interactive queries, streaming applications.

Accessibility. Python, Scala, Java, SQL and R; rich built-in libraries.

Integration. With other Big Data tools, such as Hadoop.
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Lecture 1 – Apache Spark Introduction to Spark

Spark components

Spark Core

Standalone 
Scheduler YARN Mesos

Spark SQL Structured 
Streaming MLlib GraphX

Kubernetes
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Lecture 1 – Apache Spark Introduction to Spark

Spark components

Spark core

Scheduling, distributing, and monitoring applications.

Data structures for manipulating data (RDDs, DataFrames).

Spark SQL

Spark’s package for working with (semi-)structured data.

Data querying with SQL and HQL (Hive Query Language).

Many sources of data: JSON, XML, Parquet...
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Lecture 1 – Apache Spark Introduction to Spark

Spark components

Structured streaming

Processing of live streams of data (e.g., real-time event logs)

Similar API to batch processing.

MLlib

Machine learning algorithms (e.g., classification, regression,
clustering)

All methods designed to scale out across a cluster.
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Lecture 1 – Apache Spark Introduction to Spark

Spark components

GraphX

Manipulation of graph data.

Library with common graph algorithms (e.g., PageRank)

Cluster managers

Control how tasks are distributed across a cluster.

Spark provides its own standalone cluster manager.

Spark can also use other cluster managers.
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Lecture 1 – Apache Spark Introduction to Spark

Spark unified stack: benefits

Shallow learning curve. Same programming model across all
components.

Optimization propagation. Higher-level components automatically
benefit from improvements on lower-layer components.

Cost minimization. No need for further software components.

Heterogeneous processing models in the same application.

Read a stream of data.
Apply machine learning algorithms.
Uses SQL to analyze the results.
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Lecture 1 – Apache Spark Introduction to Spark

Using Spark

Interactive mode

Using a command-line interface (CLI) or shell.

Python and Scala shell.

SparkSQL shell.

SparkR shell.

Data processing applications

Building an application by using the Spark APIs.

Scala (Spark’s native language).

Python.

Java.

Gianluca Quercini Big Data Polytech Paris-Saclay, 2022 12 / 64



Lecture 1 – Apache Spark Introduction to Spark

Who uses Spark

Several important actors use Spark:

Amazon.

eBay. Log transaction aggregation and analytics.

Groupon.

Stanford DAWN. Research project aiming at democratizing AI.

TripAdvisor.

Yahoo!

+ Full list available at http://spark.apache.org/powered-by.html
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Lecture 1 – Apache Spark Introduction to Spark

Spark application

Spark application: set of independent processes called executors.

Executor run computations and store the data for the application.

Executors are coordinated by the driver.

Spark Driver

SparkContext

Worker Node

Executor

Task Task

Cluster 
Manager

Cache

Task

Worker Node

Executor

Task Task

Cache

Task
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Lecture 1 – Apache Spark Introduction to Spark

Spark application execution

The driver is launched and creates the SparkContext object.

The SparkContext obtains executors from the cluster manager.

The driver sends the user’s code to the executors.

The driver assigns each executor a set of tasks.

A task is a computation on a chunk of data.

Spark Driver

SparkContext

Worker Node

Executor

Task Task
Cluster 

Manager

Cache

Task
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Lecture 1 – Apache Spark Introduction to Spark

Spark application execution

Applications are isolated from one another.

Each application has its own SparkContext.

An executor only runs tasks of one application.

A driver only schedules tasks for one application.

Data cannot be shared across different applications.

Spark is agnostic to the underlying cluster manager.

The driver listens to incoming connections from the executors on a
network port.

The driver should be in the same local network as the executors.

+ Two different Spark applications can still share data through an
external storage system (e.g., a database or HDFS files).
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Lecture 1 – Apache Spark Programming with Resilient Distributed Datasets (RDDs)

Spark programming

Two options exist to write a Spark application:

Low-level programming, using operations on a low-level data
structure called Resilient Distributed Dataset (RDD).

High-level programming, using high-level libraries, such as SparkSQL
and Structured Streaming.

+ In this lecture, we’ll focus on low-level programming to better
understand the inner workings of Spark.
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Lecture 1 – Apache Spark Programming with Resilient Distributed Datasets (RDDs)

Low-level Spark programming

A Spark program uses an object called SparkContext.

SparkContext represents a connection to a cluster.

Initializing the SparkContext

from pyspark import SparkCon f, SparkContext

conf = SparkConf().setMaster(<cluster URL>).setAppName(<app_name>)

sc = SparkContext(conf = conf)

A Spark program is a sequence of operations invoked on the
SparkContext (sc).

These operations manipulate a special type of data structure, called
Resilient Distributed Dataset (RDD).
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Lecture 1 – Apache Spark Programming with Resilient Distributed Datasets (RDDs)

Resilient Distributed Dataset (RDD)

Definition (Resilient Distributed Dataset)

A Resilient Distributed Dataset, or simply RDD, is an immutable,
distributed collection of objects. Source

The data in each RDD is split across multiple partitions.

Each partition resides on one node of the cluster.

Two partitions can reside on the same node.
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Lecture 1 – Apache Spark Programming with Resilient Distributed Datasets (RDDs)

Resilient Distributed Dataset (RDD)

Call me Ishmael.  Some years ago--never mind how long precisely--
having little or no money in my purse, and nothing particular to interest 
me on shore, I thought I would sail about a little and see the watery 
part of the world.  It is a way I have of driving off the spleen and 
regulating the circulation.  Whenever I find myself growing grim about 
the mouth; whenever it is a damp, drizzly November in my soul; 
whenever I find myself involuntarily pausing before coffin warehouses, 
and bringing up the rear of every funeral I meet; and especially 
whenever my hypos get such an upper hand of me, that it requires a 
strong moral principle to prevent me from deliberately stepping into the 
street, and methodically knocking people's hats off--then, I account it 
high time to get to sea as soon as I can.  This is my substitute for pistol 
and ball.  With a philosophical flourish Cato throws himself upon his 
sword; I quietly take to the ship.  There is nothing surprising in this.  If 
they but knew it, almost all men in their degree, some time or other, 
cherish very nearly the same feelings towards the ocean with me.

Call me Ishmael.  Some years ago--never mind how long precisely--
having little or no money in my purse, and nothing particular to interest 
me on shore, I thought I would sail about a little and see the watery 
part of the world.  It is a way I have of driving off the spleen and 

regulating the circulation.  Whenever I find myself growing grim about 
the mouth; whenever it is a damp, drizzly November in my soul; 
whenever I find myself involuntarily pausing before coffin warehouses, 
and bringing up the rear of every funeral I meet; and especially 

whenever my hypos get such an upper hand of me, that it requires a 
strong moral principle to prevent me from deliberately stepping into the 
street, and methodically knocking people's hats off--then, I account it 
high time to get to sea as soon as I can.  This is my substitute for pistol 

and ball.  With a philosophical flourish Cato throws himself upon his 
sword; I quietly take to the ship.  There is nothing surprising in this.  If 
they but knew it, almost all men in their degree, some time or other, 
cherish very nearly the same feelings towards the ocean with me.

Input file

Partition 0 Partition 1

Partition 2 Partition 3RDD

File in HDFS
By default

1 block = 1 partition

It is possible to 
specify a different 

number of partitions
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Lecture 1 – Apache Spark Programming with Resilient Distributed Datasets (RDDs)

Resilient Distributed Dataset (RDD)

Call me Ishmael.  Some years ago--never mind 
how long precisely--having little or no money in 
my purse, and nothing particular to interest me 
on shore, I thought I would sail about a little 
and see the watery part of the world.  It is a 
way I have of driving off the spleen and 

regulating the circulation.  Whenever I find 
myself growing grim about the mouth; 
whenever it is a damp, drizzly November in my 
soul; whenever I find myself involuntarily 
pausing before coffin warehouses, and bringing 
up the rear of every funeral I meet; and 
especially 

whenever my hypos get such an upper hand of 
me, that it requires a strong moral principle to 
prevent me from deliberately stepping into the 
street, and methodically knocking people's hats 
off--then, I account it high time to get to sea as 
soon as I can.  This is my substitute for pistol 

and ball.  With a philosophical flourish Cato 
throws himself upon his sword; I quietly take to 
the ship.  There is nothing surprising in this.  If 
they but knew it, almost all men in their degree, 
some time or other, cherish very nearly the 
same feelings towards the ocean with me.
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Lecture 1 – Apache Spark Programming with Resilient Distributed Datasets (RDDs)

Creating an RDD

1 From an in-memory collection (e.g., a list or a set).

sc.parallelize([1, 5, 3, 2, 6, 7])

+ This method is used for debugging and prototyping on
small datasets.

2 From an data source on disk (e.g., a file or a database).

sc.textFile("hdfs://sar01:9000/data/sample_text.txt")

+ This method is used in production to process large datasets.
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Lecture 1 – Apache Spark Programming with Resilient Distributed Datasets (RDDs)

About the number of partitions

RDDs created with parallelize

Local mode: number of cores on the local machines.

Cluster mode: total number of cores on all executor nodes, or 2,
whichever is larger.

RDDs created from files stored in HDFS

Number of HDFS blocks in the input file, or 2, whichever is larger.
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Lecture 1 – Apache Spark Programming with Resilient Distributed Datasets (RDDs)

RDD transformations

A transformation is an operation that takes in one or more RDDs and returns a
new RDD. A transformation is applied in parallel on each partition.

RDD 1
Transformation 1 Transformation 2 Transformation 3

RDD 2 RDD 3 RDD 4

Partition 0

Partition 1

Partition 2

Partition 3

Partition 4

Partition 5

Partition 6

Partition 7
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Lecture 1 – Apache Spark Programming with Resilient Distributed Datasets (RDDs)

RDD transformations: map

map() takes in a function f and a RDD < xi | 0 ≤ i ≤ n >; returns
a new RDD < f (xi ) | 0 ≤ i ≤ n >.

2 ; 5 ; 6 ; 7 ; 8 ; 11 ; 
13

4 ; 5 ; 2 ; 3 ; 4 ; 5 ; 8 

1 ; 4 ; 3 ; 2 ; 4 ; 5 ; 6

2 ; 4 ; 5 ; 2 ; 3 ; 4 ; 8

4 ; 25 ; 36 ; 49 ; 64 ; 121 ; 
169Partition 0

Partition 1

Partition 2

Partition 3

16 ; 25 ; 4 ; 9 ; 16 ; 25 ; 64 

1 ; 16 ; 9 ; 4 ; 16 ; 25 ; 36

4 ; 16 ; 25 ; 4 ; 9 ; 16 ; 64

map(lambda x: x*x)

map(lambda x: x*x)

map(lambda x: x*x)

map(lambda x: x*x)

+ Partition i of the input RDD is on the same node as partition i
of the output RDD.
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Lecture 1 – Apache Spark Programming with Resilient Distributed Datasets (RDDs)

RDD transformations: flatMap

flatMap is used instead of map when the function f returns a list and we need the
results to be flattened.

Lorem ipsum dolor sit amet ; 
consectetur adipiscing elit ; 
sed do eiusmod tempor 
incididunt

ut labore et dolore magna 
aliqua ; Ut enim ad minim 
veniam ; quis nostrud 
exercitation ullamco laboris

nisi ut aliquip ex ea 
commodo consequat ; Duis 
aute irure dolor

in reprehenderit in voluptate 
velit ; esse cillum dolore eu 
fugiat nulla pariatur

map(lambda x: x.split())

[Lorem, ipsum, dolor, sit, 
amet] ; [consectetur, 
adipiscing,  elit] ; [sed, do, 
eiusmod, tempor incididunt]

[ut, labore, et, dolore, magna, 
aliqua] ; [Ut, enim, ad, minim, 
veniam] ; [quis, nostrud, 
exercitation, ullamco, laboris]

[nisi, ut, aliquip, ex, ea, 
commodo, consequat] ; 
[Duis, aute, irure, dolor]

[in, reprehenderit, in, 
voluptate, velit] ; [esse, 
cillum, dolore, eu, fugiat, 
nulla pariatur]

Lorem ; ipsum ; dolor ; sit ; 
amet ; consectetur ; 
adipiscing ;  elit ; sed ; do ; 
eiusmod ; tempor ; incididunt

ut ; labore ; et ; dolore ; 
magna ; aliqua ; Ut ; enim ; 
ad ; minim ; veniam ; quis ; 
nostrud ; exercitation ; 
ullamco ; laboris

nisi ; ut ; aliquip ; ex ; ea ; 
commodo ; consequat ; 
Duis ; aute ; irure ; dolor

in ; reprehenderit ; in ; 
voluptate ; velit ; esse ; 
cillum ; dolore ; eu ; fugiat ; 
nulla ; pariatur

flatMap(lambda x: x.split())
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Lecture 1 – Apache Spark Programming with Resilient Distributed Datasets (RDDs)

RDD transformations: filter

filter() takes in a predicate p and a RDD < xi | 0 ≤ i ≤ n >;
returns a new RDD < xi | 0 ≤ i ≤ n, p(xi ) is true >

2 ; 5 ; 6 ; 7 ; 8 ; 11 ; 
13

4 ; 5 ; 2 ; 3 ; 4 ; 5 ; 8 

1 ; 4 ; 3 ; 2 ; 4 ; 5 ; 6

2 ; 4 ; 5 ; 2 ; 3 ; 4 ; 8

5 ; 6 ; 7 ; 8 ; 11 ; 13Partition 0

Partition 1

Partition 2

Partition 3

4 ; 5 ; 4 ; 5 ; 8 

4 ; 4 ; 5 ; 6

4 ; 5 ; 4 ; 8

filter(lambda x: x>3)

filter(lambda x: x>3)

filter(lambda x: x>3)

filter(lambda x: x>3)
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Lecture 1 – Apache Spark Programming with Resilient Distributed Datasets (RDDs)

RDD transformations: union

union() takes in two RDDs and returns a new RDD containing the
items of the first and second RDD with repetitions.

3 ; 4

1 ; 5

4 ; 2

4 ; 5

RDD 1

10

12 ; 13

2 ; 4

3 ; 6

RDD 2

3 ; 4

1 ; 5

4 ; 2

4 ; 5

10

12 ; 13

2 ; 4

3 ; 6

union
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Lecture 1 – Apache Spark Programming with Resilient Distributed Datasets (RDDs)

RDD transformations: distinct

distinct() takes in one RDD and returns a new RDD containing
the items of the input RDD without repetitions.

2 ; 5 ; 6 ; 7 ; 8 ; 11 ; 
13

4 ; 5 ; 2 ; 3 ; 4 ; 5 ; 8 

1 ; 4 ; 3 ; 2 ; 4 ; 5 ; 6

2 ; 4 ; 5 ; 2 ; 3 ; 4 ; 8

8 ; 4Partition 0

Partition 1

Partition 2

Partition 3

5 ; 13 ; 1

2 ; 6

7 ; 11 ; 3

distinct()

+ Unlike the previous transformations, distinct leads to data
being shuffled.
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Lecture 1 – Apache Spark Programming with Resilient Distributed Datasets (RDDs)

About data shuffling F

Which partition does the element 23 belong to in the RDD
obtained after applying the transformation distinct?

4 ; 5 ; 4

3 ; 2 ; 6 ; 7

23 ; 12 ; 1 ; 4

4 ; 23 ; 11 ; 2

4 ; 12Partition 0

Partition 1

Partition 2

Partition 3

5 ; 1 

2 ; 6

3 ; 7 ; 11

distinct()
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Lecture 1 – Apache Spark Programming with Resilient Distributed Datasets (RDDs)

About data shuffling F

The element 23 belongs to the partition 3.

While shuffling, the destination partition p of an element K in a
RDD with n partitions is computed as follows:

p = hashCode(K ) mod n
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Lecture 1 – Apache Spark Programming with Resilient Distributed Datasets (RDDs)

RDD transformations: intersection

intersection() takes in one or two RDDs and returns a new RDD
containing the items that occur in both RDDs.

3 ; 4

1 ; 5

4 ; 2

4 ; 5

RDD 1

10

12 ; 13

2 ; 4

3 ; 6

RDD 2

2

3

4

intesection
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Lecture 1 – Apache Spark Programming with Resilient Distributed Datasets (RDDs)

Narrow transformations F

Definition (Narrow transformation)

A narrow transformation is one where each partition of the output RDD
depends on at most one partition of the input RDD.

Which of the above transformations are narrow?

Narrow transformations are inexpensive.
No need for communication between executors.
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Lecture 1 – Apache Spark Programming with Resilient Distributed Datasets (RDDs)

Narrow transformations F

Definition (Narrow transformation)

A narrow transformation is one where each partition of the output RDD
depends on at most one partition of the input RDD.

filter, map, flatMap and union are narrow
transformations.

Narrow transformations are inexpensive.
No need for communication between executors.
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Lecture 1 – Apache Spark Programming with Resilient Distributed Datasets (RDDs)

Wide transformations F

Definition (Wide transformation)

A wide transformation is one where each partition of the output RDD
may depend on several partitions of the input RDD.

Which of the above transformations are wide?

Wide transformations are more costly.
Executors need to communicate.
Data is shuffled across the cluster network.
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Lecture 1 – Apache Spark Programming with Resilient Distributed Datasets (RDDs)

Wide transformations F

Definition (Wide transformation)

A wide transformation is one where each partition of the output RDD
may depend on several partitions of the input RDD.

distinct and intersection are wide transformations.

Wide transformations are more costly.
Executors need to communicate.
Data is shuffled across the cluster network.
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Lecture 1 – Apache Spark Programming with Resilient Distributed Datasets (RDDs)

RDD actions

An action is an operation that takes in a RDD and returns a value to
the driver after running a computation of the dataset.

The result of an action is sent to the driver.

If the result is a list of values, all values are sent to the driver.

The result of an action can also be written to disk.

Disk writes can be to the local file system or HDFS.
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Lecture 1 – Apache Spark Programming with Resilient Distributed Datasets (RDDs)

RDD actions: reduce

reduce() takes in an RDD and a function f and applies the function
pair-wise to all elements of the input RDD.

3 ; 4

1 ; 5

4 ; 2

2 ; 4 ; 5

RDD

Partition 0

Partition 1

Partition 2

Partition 3

reduce(lambda x, y: x+y)

3 + 4 = 7

1 + 5 = 6

4 + 2 = 6

2 + 4 + 5 = 11

Driver 7 + 6 + 6 + 11 = 30

The function f must take in 2 arguments.
The type of the value returned by the function f must be the
same as the type of the elements of the input RDD.
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Lecture 1 – Apache Spark Programming with Resilient Distributed Datasets (RDDs)

RDD actions: collect

collect() takes in an RDD and returns the list of the elements in
the RDD.

3 ; 4

1 ; 5

4 ; 2

2 ; 4 ; 5

Partition 0

Partition 1

Partition 2

Partition 3

collect()

[3, 4]

[1, 5]

[4, 2]

[ 2, 4, 5]

Driver [3, 4, 1, 5, 4, 2, 2, 4, 5]
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Lecture 1 – Apache Spark Programming with Resilient Distributed Datasets (RDDs)

Is collect() a safe action? F

What are the risks, if any, while invoking collect() on a
large RDD?
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Lecture 1 – Apache Spark Programming with Resilient Distributed Datasets (RDDs)

Is collect() a safe action? F

What are the risks, if any, while invoking collect() on a
large RDD?

High network traffic.
The driver’s memory may not enough to store all the RDD
elements.
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Lecture 1 – Apache Spark Programming with Resilient Distributed Datasets (RDDs)

RDD actions: count

count() takes in an RDD and returns the number of items in the
RDD.

3 ; 4

1 ; 5

4 ; 2

2 ; 4 ; 5

Partition 0

Partition 1

Partition 2

Partition 3

count()

2

2

2

3

Driver 2+2+2+3 = 9
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Lecture 1 – Apache Spark Programming with Resilient Distributed Datasets (RDDs)

Understanding the code F

What does the following code?

r1 = sc.parallelize(["computer science", "geology", \

"chemistry", "biology", "astronomy"])

r2 = r1.map(lambda x: x.capitalize())
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Lecture 1 – Apache Spark Programming with Resilient Distributed Datasets (RDDs)

Understanding the code F

What does the following code?

r1 = sc.parallelize(["computer science", "geology", \

"chemistry", "biology", "astronomy"])

r2 = r1.map(lambda x: x.capitalize())

r2 is an RDD (result of a transformation).
r2 has as many elements as r1.
Each item of r2 is a string from r1 with the first letter
capitalized.
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Lecture 1 – Apache Spark Programming with Resilient Distributed Datasets (RDDs)

What does the following code? F

What does the following code?

r1 = sc.parallelize(["computer science", "geology", \

"chemistry", "biology", "astronomy"])

r2 = r1.filter(lambda x: len(x) > 10)
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Lecture 1 – Apache Spark Programming with Resilient Distributed Datasets (RDDs)

What does the following code? F

What does the following code?

r1 = sc.parallelize(["computer science", "geology", \

"chemistry", "biology", "astronomy"])

r2 = r1.filter(lambda x: len(x) > 10)

r2 is an RDD (result of a transformation).
r2 has less elements than r1.
r2 only contains the items from r1 that have more than 10
characters.
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Lecture 1 – Apache Spark Programming with Resilient Distributed Datasets (RDDs)

What does the following code? F

What does the following code?

r1 = sc.parallelize(["computer science", "geology", \

"chemistry", "biology", "astronomy"])

r2 = r1.reduce(lambda x, y: "{} - {}".format(x, y))
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Lecture 1 – Apache Spark Programming with Resilient Distributed Datasets (RDDs)

What does the following code? F

What does the following code?

r1 = sc.parallelize(["computer science", "geology", \

"chemistry", "biology", "astronomy"])

r2 = r1.reduce(lambda x, y: "{} - {}".format(x, y))

r2 is a string, not a RDD (result of an action).
r2 is the string ”computer science - geology - chemistry -
biology - astronomy”.
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What does the following code? F

What does the following code?

r1 = sc.parallelize(["computer science", "geology", \

"chemistry", "biology", "astronomy"])

r2 = r1.reduce(lambda x, y: [x + y])
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What does the following code? F

What does the following code?

r1 = sc.parallelize(["computer science", "geology", \

"chemistry", "biology", "astronomy"])

r2 = r1.reduce(lambda x, y: [x + y])

The code is incorrect, because the return type (list) of the reduce

function is different from the type of the input RDD elements (string).
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What does the following code? F

What does the following code?

r1 = sc.parallelize(["author", "title", "edition"])

r2 = r1.flatMap(lambda x: [c for c in x])
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Lecture 1 – Apache Spark Programming with Resilient Distributed Datasets (RDDs)

What does the following code? F

What does the following code?

r1 = sc.parallelize(["author", "title", "edition"])

r2 = r1.flatMap(lambda x: [c for c in x])

r2 is an RDD (result of a transformation).
Each element of r2 is a letter from a string in r1. How would
that be different if we had used map instead of flatMap?
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Key-value RDDs

Key-value RDDs (a.k.a., Pair RDDs) are RDDs where each item is
a pair (k , v), k being the key and v being the value.

Key-value RDDs are important building blocks in many applications.

Key-value RDDs support all the transformations and actions that can
be applied on regular RDDs.

Key-value RDDs support special transformations and actions.
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Key-value RDDs transformations: reduceByKey

reduceByKey takes in a RDD with (K ,V ) pairs and a function f and returns a new
RDD of (K ,V ) pairs where the values for each key are aggregated using f , which
must be of type (V ,V ) → V .

('cat', 2) ; (‘owl', 3)

('dog', 5) ; (‘cat', 2)

('dog', 1) ; (‘cow', 1)

('cat', 3) ; (‘owl', 4) ;
(‘tiger', 1)

RDD

Partition 0

Partition 1

Partition 2

Partition 3

('cat', 7) ; (‘owl', 7) ; 
(‘cow', 1) ;  (‘tiger', 1)

('dog', 6)

reduceByKey(lambda x, y: x+y)
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Key-value RDDs transformations: reduceByKey

The input RDD has a certain number of partitions n.

No assumption can be made on which elements belong to which
partition.

The RDD returned by reduceByKey is hash partitioned. Each item
belongs to a precise partition.

The partition number p of a pair (K ,V ) is derived as follows:

p = hashCode(K ) mod num partitions
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Key-value RDDs transformations: groupByKey

groupByKey takes in a RDD with (K ,V ) pairs and returns a new RDD of
(K , Iterable < V >) pairs.

('cat', 2) ; (‘owl', 3)

('dog', 5) ; (‘cat', 2)

('dog', 1) ; (‘cow', 1)

('cat', 3) ; (‘owl', 4) ;
(‘tiger', 1)

Partition 0

Partition 1

Partition 2

Partition 3

('cat', iter) ; (‘owl', iter) ; 
(‘cow', iter) ;  (‘tiger', iter)

('dog', iter)

groupByKey()
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Key-value RDDs transformations: mapValues

mapValues takes in a RDD with (K ,V ) pairs and a function f and returns a new
RDD where the function f is applied to each value V (keys are not modified).

('cat', [2, 2, 3]) ; ('owl', [3, 4]) ; 
('cow', [1]) ; ('tiger', [1])

('dog', [5, 1])

Partition 0

Partition 1

Partition 2

Partition 3

('cat', 3), ('owl', 2), 
('cow', 1), ('tiger', 1)

('dog', 2)

mapValues(lambda x: len(x))
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Example: Word count

def word_count(input_file):

text = sc.textFile(input_file)

return text.flatMap(lambda line: line.split(" "))\

.map(lambda word: (word, 1))\

.reduceByKey(lambda x, y: x+y)

The function textFile reads a text file into a RDD.
Two narrow transformations (flatMap and map) and one wide
transformation (reduceByKey).

+ Spark maintains a logical execution plan (called RDD lineage)
described as a Directed Acyclic Graph (DAG).
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RDD lineage

SparkContext 
(sc)

HadoopRDD

MappedRDD

MappedRDD

ShuffledRDD

sc.textFile(input_file)

flatMap(lambda line: line.split(" ")

map(lambda word: (word, 1)

reduceByKey(lambda x, y: x+y)
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Spark has a DAG scheduler that splits
the graph into multiple stages.
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RDD lineage: stages

Stage 1

Stage 2

SparkContext 
(sc)

HadoopRDD

MappedRDD

MappedRDD

ShuffledRDD

sc.textFile(input_file)

flatMap(lambda line: line.split(" ")

map(lambda word: (word, 1)

reduceByKey(lambda x, y: x+y)
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Sequences of narrow transformations
are pipelined into a single stage. Wide
transformations always trigger a new
stage.
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RDD lineage: stages

Stage 1

Stage 2
SparkContext 

(sc)

sc.textFile(input_file)

map(lambda x….)

sc.parallelize()

Stage 3

join()

filter()

saveAsTextFile()
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Stages that have no dependency can
be executed in parallel.
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RDD lineage: tasks

Stage 1

Stage 2

SparkContext 
(sc)

sc.textFile(input_file)

flatMap(lambda line: line.split(" ")

map(lambda word: (word, 1)

reduceByKey(lambda x, y: x+y)
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The DAG scheduler submits the stages
to the task scheduler. Creates as many
tasks as there are partitions in the RDD.
Tasks are executed in parallel.
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RDD lineage: fault tolerance

groupBy

map

union

join
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What to do when a partition is
lost?
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RDD lineage: fault tolerance

groupBy

map

union

join
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Lost partitions can be recomputed
thanks to the lineage graph.

No need to save intermediate re-
sults to disk.
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Lazy evaluation

In Spark, transformations are lazily evaluated.

Definition (Lazy evaluation)

When a transformation is invoked, Spark does not execute it
immediately. Transformations are only executed when the first action is
called.

An RDD can be thought of a set of instructions on how to compute
the data that we build up through transformations.

Lazy evaluation helps reducing the number of passes needed to
load and transform the data.
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Lazy evaluation: motivating example F

lines = sc.textFile("./data/logfile.txt")

exceptions = lines.filter(lambda line : "exception" in line)

nb_lines = exceptions.count()

print("Number of exception lines ", nb_lines)

What happens if Spark executes immediately each
transformation?
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Lazy evaluation: motivating example F

Invoking sc.textFile() does not load immediately the data.

The transformation filter() is not applied when it is invoked.

Transformations are applied only when the action count() is invoked.

Only the data that meet the constraint of the filter is loaded from
the file.

lines = sc.textFile("./data/logfile.txt")

exceptions = lines.filter(lambda line : "exception" in line)

nb_lines = exceptions.count()

print("Number of exception lines ", nb_lines)

+ Without lazy evaluation we would have loaded into main mem-
ory the whole content of the input file.
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Lazy evaluation: consequences F

The following code invokes two actions: which ones?

What happens when we invoke the second action?

Example

lines = sc.textFile("./data/logfile.txt")

exceptions = lines.filter(lambda line : "exception" in line)

nb_lines = exceptions.count()

exceptions.collect()
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Lazy evaluation: consequences F

With lazy evaluation, transformations are computed each time an
action is invoked on a given RDD.

In the following example, all transformations are computed when we
invoke the function count() and the function collect().

Example

lines = sc.textFile("./data/logfile.txt")

exceptions = lines.filter(lambda line : "exception" in line)

nb_lines = exceptions.count()

exceptions.collect()

To avoid computing transformations multiple times, we can persist
the data.

Gianluca Quercini Big Data Polytech Paris-Saclay, 2022 61 / 64



Lecture 1 – Apache Spark Spark execution model

Persisting the data

Persisting the data means caching the result of the transformations.

Either in main memory (default), or disk or both.

If a node in the cluster fails, Spark recomputes the persisted
partitions.

We can replicate persisted partitions on other nodes to recover from
failures without recomputing.

lines = sc.textFile("./data/logfile.txt")

exceptions = lines.filter(lambda line : "exception" in line)

exceptions.persist(StorageLevel.MEMORY_AND_DISK)

nb_lines = exceptions.count()

exceptions.collect()

persist() is called right before the first action.

persist() does not force the evaluation of transformations.

unpersist() can be called to evict persisted partitions.
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References

Karau, Holden, et al. Learning spark: lightning-fast big data analysis.
O’Reilly Media, Inc., 2015. Click here
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Playing with transformations and actions

Notebook available on Google Colab Click here

+ Select File → Save a copy in Drive to create a copy of the
notebook in your Drive and play with it.
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https://colab.research.google.com/drive/1jfCdVVMD_OrTubT0-URqu3SJvQ5mqMfh?usp=sharing
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