
1

SG6: High Performance Computing

Serial optimizations and
vectorization

Stéphane Vialle

Stephane.Vialle@centralesupelec.fr
http://www.metz.supelec.fr/~vialle

2

HPC programming strategy
Numerical algorithm

Optimized code on one core:
- Optimized compilation
- Serial optimizations
- Vectorization

Parallelized code on one node
- Multithreading
- Minimal/relaxed synchronization
- Data-Computation localization

- NUMA effect avoidance

Distributed code on a cluster:
- Message passing accros processes
- Load balanced computations
- Minimal communications

- Overlapped computations and comms

3

1 - Three important issues to get
optimized code on one CPU core

1.1 – Compile with optimization options

1.2 – Implement data storage and data accesses taking
advantage of cache memory hierarchy

1.3 – Implement sequences of instructions taking
advantage of vector computing units

4

3 important issues to get optimized code on 1 core

Compile with optimization options
Any compiler propose options to produce executable code:

• Requiring less memory
• Running faster
• …

With Linux C/C++ compilers (ex: gcc/icc):
-O0: no optimization
-O1: 1st level of standard optimizations
-O2: 2nd level of standard optimizations
-O3: 3rd level of standard optimizations,

- usual level for HPC codes
- enables vectorization

And many specific optimization options:
Ex: gcc –funroll-loops... (see further)

 gcc –O3 –funroll-loops pgm.c –o pgm

With Windows compilers:
• similar and different

options
• in the configuration

menu of Visual Studio
(for example)

5

3 important issues to get optimized code on 1 core

Compile with optimization options
Any compiler propose options to produce executable code:

• Requiring less memory
• Running faster
• …

But an optimized compilation:

• Lasts longer
Ex: Intel compiler takes long time to attempt to vectorize the

code but produces very helpful vectorization reports!

• Requires a higher quality of the source codes
Some source codes can compile and successfully run when using
-O0 or -O1, but fails when using –O3 !
(especially when tinkering the data alignment in memory…)

6

3 important issues to get optimized code on 1 core

Compile with optimization options
Any compiler propose options to produce executable code:

• Requiring less memory
• Running faster
• …

1. Engage the standard optimization options of the compiler (always!)
(-O3 for HPC code)

2. Improve your source code up to support the standard optimization
options

3. Look at the specific optimization options of your compiler, and
experiment these options

HPC compilation rules:

2

7

1 - Three important issues to get
optimized code on one CPU core

1.1 – Compile with optimization options

1.2 – Implement data storage and data accesses
taking advantage of cache memory hierarchy

1.3 – Implement sequences of instructions taking
advantage of vector computing units

8

3 important issues to get optimized code on 1 core

Take advantage of cache memory
Principles of the cache memory:

TabIn TabOut

RAM

Cache memory

CPU

9

3 important issues to get optimized code on 1 core

Take advantage of cache memory
Principles of the cache memory:

TabIn TabOut

RAM:
large and slow
and small surface
and not energy consumming

Cache memory: small and fast
and small surface
and energy consumming

CPU

Efficient load
of 1 cache line

Efficient write
of 1 cache line

Fast read and write

10

3 important issues to get optimized code on 1 core

Take advantage of cache memory
Memory hierarchy:

• L1 and L2 cache memory are « internal CPU cache »

• L3 cache is external, or internal, or does not exist: depends on the CPU

11

3 important issues to get optimized code on 1 core

Take advantage of cache memory
Example of inefficient data storage and accesses:

typedef struct {
double x, y, z;

} Point;

Point Tab[N];
double Sx = 0.0;
double MoyX;

…
for (i=0; i<N; i++) {

Sx += Tab[i].x;
}
MoyX = Sx/N;
…

x y z x

x y z x y z x y z Tab

4 data
2 useful data

1 cache line:

CPU

RAM

Cache memory

Array of structures (objects)
2 ‘𝑥 coordinates’ are separated by 2 others
values, unused in this computations, but
tacking space into cache memory

12

3 important issues to get optimized code on 1 core

Take advantage of cache memory
Example of efficient data storage and accesses:

typedef struct {
double TabX[N];
double TabY[N];
double TabZ[N];

} Points;

Points pts;
double Sx = 0.0;
double MoyX;

…
for (i=0; i<N; i++) {

Sx += pts.TabX[i];
}
MoyX = Sx/N;
…

x x x x

x x x pts

4 data
4 useful data

1 cache line:

CPU

RAM

Cache memory

Structure of arrays
‘𝑥 coordinates’ are contiguously stored in
RAM, and contiguously copied/stored in
cache: any valid value in cache should be
useful

z z z zy y y yx

3

13

1 - Three important issues to get
optimized code on one CPU core

1.1 – Compile with optimization options

1.2 – Implement data storage and data accesses taking
advantage of cache memory hierarchy

1.3 – Implement sequences of instructions taking
advantage of vector computing units

14

3 important issues to get optimized code on 1 core

Take advantage of vector computing units
Vector computing:

Instru-
ctions

ALUs

AVX units

Each CPU core is a small
vector machine:

1 instruction can be
applied on vectors of
input data and can
produce a vector of
output data

 One instruction can be executed
in parallel by different ALU, on
different data

15

3 important issues to get optimized code on 1 core

Take advantage of vector computing units
Scalar vs vector operations:

Instru
-ctions ALUs

4 successive
scalar operations

1 vector
operation

x4

16

3 important issues to get optimized code on 1 core

Take advantage of vector computing units
Requirements to enable vector operations:

• Input and output data must be stored in arrays at contiguous indexes

(compliant with an efficient data storage based on cache memory usage)

• Internal loop must have:
- Identical operations

- no if-then-else in the loop body

- but if-then is possible, as an ALU can do the operation or nothing

• Arrays must not overlap (« no aliasing ») operations could not be
parallelized

- Idependent operations
- can be executed in any order

res[i] = input[i] + res[i-1] : impossible to vectorize
- write in different variables reductions must be adapted

res += input[i]*input[i] : limit/stop the vectorization

17

3 important issues to get optimized code on 1 core

Take advantage of vector computing units
How to write vector code (instead of scalar code) ?

• Implement explicit vector code using « intrinsic » low level library…

• Add directives to guide the compiler to generate vector code:
#pragma simd
#pragma ivdep
for (j = 0; j < n; j++)
DynamicTab[j] = …

• auto-vectorization:

Write clean standard code with respect to all vectorization constraints
and ask to the compiler to vectorize the code (compilation option)

for (j = 0; j < 1000; j++)
StaticTab[j] = …

gcc –O3 pgm.c –o pgm
18

2 – Optimization and vectorization
of a Dense Matrix Product

2.1 – Stengths and weaknesses of the naive version

2.2 – 1st solution: evolution of the data storage

2.3 – 2nd solution: evolution of the loop order

4

19

Strenghts and weaknesses
of the naive version

for (int i = 0; i < N; i++)
for (int j = 0; j < N; j++)
for (int k = 0; k < N; k++)

C[i][j] += A[i][k]*B[k][j];

𝐶 , = ∑ 𝐴 , 𝐵 ,
Strenghts :

The naive version
implements directly the
mathematical expression

Code is:
• easy to implement
• easy to maintain

Weaknesses :

1. Internal loop does not acces B[k][j] elements in contiguous order

 makes a not-optimal usage of the cache memory

2. Internal loop writes in the same variable C[i][j] at each iteration

 limits/stops the vectorization (iterations not independent)

A

B

C
i

j

20

2 – Optimization and vectorization
of a Dense Matrix Product

2.1 – Stengths and weaknesses of the naive version

2.2 – 1st solution: evolution of the data storage

2.3 – 2nd solution: evolution of the loop order

21

1st solution: evolution of the data storage

Identification of « cache misses »

j

B

A

i
k

k

C

Access to successive elements
in RAM: takes advantage of the
cache memory mechanism

Access non contiguous
elements in RAM:
• many « cache misses »
• poor usage of the

cache memory

for i
for j
for (int k=0; k<n; k++)

Cij += Aik * Bkj

Cij += Aik*Bkj

Considering successive
iterations of k-loop:

22

TB

A
C

i

j

k

k

1st solution: evolution of the data storage

Avoiding « cache misses »

j

for i
for j
for (int k=0; k<n; k++)
Cij += Aik * TBjk

Considering successive
iterations of k-loop:

Access to successive elements
in RAM: takes advantage of the
cache memory mechanism

Cij += Aik*TBjk

Access to successive
elements in RAM: takes
advantage of the cache
memory mechanism

23

// Dense matrix product: C = A×B
for (int i = 0; i < n; i++)

for (int j = 0; j < n; j++) {
for (int k = 0; k < n; k++) {

C[i][j] += A[i][k]*TB[j][k];
}

}

Source code with new data storage

1st solution: evolution of the data storage

Avoiding « cache misses »

This source code version is closer of the architecture of the processor
• faster
• more complex to understand and to maintain

Compilation: gcc –O3 pgm.c –o pgm

24

TB

A
C

i

j

k

k

1st solution: evolution of the data storage

Identification of a vectorization lock

j

for i
for j
for (int k=0; k<n; k++)
Cij += Aik * TBjk

Considering successive
iterations of k-loop:

Cij += Aik*TBjk

• Write/Accumulation
in the same variable
(Cij):

At each iteration:
• Identical computation

(no if-then-else,
no divergence)

• Access to successive
array indexes

• iterations are not
independent

• vectorization
is limited

5

25

TB

A

i

j

k

k

for i
for j
double Acc[4] = {0}
for (k=0; k<n; k+=4)

Acc[0] += Aik+0*TBjk+0
Acc[1] += Aik+1*TBjk+1
Acc[2] += Aik+2*TBjk+2
Acc[3] += Aik+3*TBjk+3

Cij = Acc[0]+Acc[1]+
Acc[2]+Acc[3];

• Loop unrolling

• Accumulation in a
vector of buffers

1st solution: evolution of the data storage

Unlocking the vectorization

j

C

Each k-loop iteration:
• includes 4 identical &

independent instructions
• reading and writing

successive array indexes

 Compiler can
vectorize each
k-loop iteration

if n = 4.q

26

// Dense matrix product: C = A×B
for (int i = 0; i < n; i++)

for (int j = 0; j < n; j++) {
double accu[8] = {0.0};
for (int k = 0; k < (n/8)*8; k += 8) {

accu[0] += A[i][k+0]*TB[j][k+0];
accu[1] += A[i][k+1]*TB[j][k+1];
………
accu[7] += A[i][k+7]*TB[j][k+7];

}
for (int k = (n/8)*8; k < n; k++)

accu[0] += A[i][k]*TB[j][k];
C[i][j] = accu[0] + … + accu[7];

}

1st solution: evolution of the data storage

Unlocking the vectorization
Source code 1: with new data storage & loop unrolling

Generic solution
runs for any
value of n

(int value / 8 :
integer division)

Loop unrolling
with 8-factor
(in case of long
AVX units)

Compilation: gcc –O3 –f unroll-loops pgm.c –o pgm

Specific compilation option:
to improve loop unrolling

27

// Dense matrix product: C = A×B
for (int i = 0; i < n; i++)

for (int j = 0; j < n; j++) {
for (int k = 0; k < (n/8)*8; k += 8) {

C[i][j] += A[i][k+0]*TB[j][k+0] +
A[i][k+1]*TB[j][k+1] +
………
A[i][k+7]*TB[j][k+7];

}
for (int k = (n/8)*8; k < n; k++)

C[i][j] += A[i][k]*TB[j][k];
}

1st solution: evolution of the data storage

Unlocking the vectorization
Source code 2: with new data storage & loop unrolling

Generic solution
runs for any
value of n

Loop unrolling
with 8-factor
(in case of long
AVX units)

Compilation: gcc –O3 –f unroll-loops pgm.c –o pgm

Implement loop unrolling & a big instruction, grouping many identical
operations on successive array indexes

 Better or worst than previous solution: depends on the compiler 28

2 – Optimization and vectorization
of a Dense Matrix Product

2.1 – Stengths and weaknesses of the naive version

2.2 – 1st solution: evolution of the data storage

2.3 – 2nd solution: evolution of the loop order

29

for i
for k
for j

Cij += Aik * Bkj

2nd solution: evolution of the loop order

Inversion of j and k loops

j

B

A

i
k

k

C

Access to only one element
of A: no cache miss pb

Access to successive
array indexes: right use
of the cache memory

Access to successive
array indexes: right use
of the cache memory

j

+ no explicit loop-unrolling
(use only –funroll-loops
option of the compiler)

Considering successive
iterations of j-loop:

+ Independent & identical
operations

+ No write conflict

 auto-vectorization

30

Source code with new loop order: « ikj »

// Dense matrix product: C = A×B
for (int i = 0; i < n; i++)

for (int k = 0; k < n; k++)
for (int j = 0; j < n; j++)

C[i][j] += A[i][k]*B[k][j];

• Right use of the cache memory
• Suppression of the write conflict during vectorization of the inner loop

 Decreases the number of cache misses
 Enable the auto-vectorization

2nd solution: evolution of the loop order

Inversion of j and k loops

Compilation: gcc –O3 –f unroll-loops pgm.c –o pgm

Usually faster when compiling
with –f unroll-loops option

Elegant and efficient ! … but not always so simple !

6

i

j

k

31

2nd solution: evolution of the loop order

Investigating all possible inner loop

Right use
of cache
Vectorisation
enabled

Cij Aik Bkj*+=
Inner
loop

i

j

k

NO!
cache misses

OK
access one elt

NO
not-contiguous

OK
access one elt

NO!
cache misses

NO!
not-contiguousNO NO

OK
access one elt

OK
contiguous

OK
contiguous

OK
contiguous

no W conflict

OK
contiguous

OK
access one eltOK OK

OK
access one elt

OK
contiguous

NO!
cache misses

OK
contiguous

NO!
not-contiguous

NO NO!
W conflit NO

 inner loop = j-loop : the only right solution
(without changing the data storage)

Right use
of cache
Vectorisation
enabled

Right use
of cache
Vectorisation
enabled

32

3 – Next step:
« cache blocking / tiling »

33

Standard matrix product:
• Read one row of A and one column of B (or a line of Bt)

and compute one element of C
• Compute the « next » element of C: next column,

same line
• Optimization avoids many cache misses

« Cache blocking / Tiling »

But each input value is still read many times from
the RAM, while computing all C elements:

 poor usage of the cache memory !

• Each A row is read N times
• Each B column is read N times

NxN matrixes

 Compute blocks / tiles of C matrix to decrease the global
number of RAM accesses

34

= +× × + ×

cache size

« Cache blocking / Tiling »

Set Tile size to have: 3×Tile size ≤ Cache size

At any time:
• 3 tiles in cache memory
• computation using only the 3 tiles
• maximum re-use of each tile while it is in cache

(optimize the schedule of the C tile computation)

« Tiling » is very
classical in HPC
algorithmic and
programming

35

Experiments

36

Experiments on an Intel Xeon Haswell

Experiments (2018) :

Dense matrix product: 4096x4096, double precision

Processor: Intel Xeon Haswell E5‐2637 v3 - 2014
(4 physical cores – 2 threads/core)

Seq. Naive
-O0

Seq. Naive
-O3

-O3 +
Optimized code +
Vectorization

BLAS
monothread
(OpenBLAS)

0.12 Gflops 0.35 Gflops 3.10 Gflops 46.3 Gflops

x1.0 x2.9 x25.8 x385.8

 Use optimized HPC libraries when available

 Optimize your source code when HPC library does not exist

2 threads/core 1 thread/core

7

37

Experiments on 2 Intel Xeon architectures

Expérimentation (2019) : Kernel développé en TP (K0)
• Sarah : quad-cores à 3.5 GHz

(E5-2637 v3 « haswell », 15MB cache, 2014 – gcc 5.4.0)

• Kyle : octo-cores à 2.1 GHz
(Silver 4110 CPU « skylake », 11MB cache, 2017 – gcc 7.3.0)

0

2

4

6

8

Sarah
O0

Kyle
O0

Sarah
O3

Kyle
O3

G
Fl
o
p
s

2048x2048

0

2

4

6

8

Sarah
O0

Kyle
O0

Sarah
O3

Kyle
O3

G
Fl
o
p
s

1024x1024 Naif

 + Accu

 + TB

 + Loop‐unroll

 + Vect‐Accu

 + Long op

ikj

Les petites matrices tiennent mieux en cache perfs + élevées
La solution « ikj » apparait très bonne.

38

Experiments on 2 Intel Xeon architectures

Expérimentation (2019) : Kernel OpenBLAS (K1)
• Sarah : quad-cores à 3.5 GHz

(E5-2637 v3 « haswell », 15MB cache, 2014 – gcc 5.4.0)

• Kyle : octo-cores à 2.1 GHz
(Silver 4110 CPU « skylake », 11MB cache, 2017 – gcc 7.3.0)

0

10

20

30

40

50

Sarah Kyle

G
Fl
o
p
s

1024x1024

0

10

20

30

40

50

Sarah Kyle

G
Fl
o
p
s

2048x2048

0

10

20

30

40

50

Sarah Kyle

G
Fl
o
p
s

4096x4096

Best K0 ‐ TP

K1 ‐ OpenBLAS

Les BLAS cumulent des développement très conséquents
Toujours les utiliser pour des calculs d’algèbre linéaire

39

Serial optimizations and
vectorization

Questions ?

