



SG6 - HPC

## TD2-3/Lab-2 – Part 1: Deployment of an MPI application on a PC cluster

**Stéphane Vialle** 







# Deployment of an MPI application on a PC cluster

#### **Deployment rules & communication scheme**

1<sup>st</sup> deployment: using processes and threads2<sup>nd</sup> deployment: using only processes



Deployment rules & communication scheme

### Do not waste resources!



#### Use ALL physical cores of your nodes!

(with processes or threads)



Minimize the communication cost across the interconnection network (maximizing comm. inside each node)





## Deployment rules & communication scheme Virtual ring of processes

#### Distributed *Matrix Product* algorithm:

- ring comm. scheme
- P<sub>i</sub> communicates only with P<sub>i-1</sub> and P<sub>i+1</sub>



## Distributed & multithreaded implementation:

- MPI + OpenMP
- OpenBLAS





For a given nb of allocated nodes (N<sub>n</sub>):

- → Find 2 relevant *mpirun* commands
  - Not wasting any resource
  - Minimizing the comm. cost



# Deployment of an MPI application on a PC cluster

#### Deployment rules & communication scheme 1<sup>st</sup> deployment: using processes and threads 2<sup>nd</sup> deployment: using only processes



#### 1<sup>st</sup> deployment: using processes and threads Deployment strategy



mpirun –np XX=2×N<sub>n</sub> –machinefile machines.txt –map-by ppr:1:socket comms: only 50% are expensive!

-rank-by socket

-bind-to socket

./MatrixProduct -- klc YY -- k 1 -- nt 8



#### 1<sup>st</sup> deployment: using processes and threads TODO(1)

#### **Questions:**

- 1. Measure performances (Gflops) on 4, 8 and 16 nodes, with -k 1 -klc 16
  - → Use OAR « *batch mode* » with « *myrun* » shell script:
    - Ex: oarsub -p "cluster='kyle'" -l nodes=4 './m*yrun 8 16'*
    - after unzipping the archive, don't forget:

dos2linux myrun and chmod 700 myrun

2. Compare to previous measurements on Kyle cluster (S. Vialle – 27/12/2019):

| Nb of nodes | 1   | 2   | 4   | 8    | 16   | 32   |
|-------------|-----|-----|-----|------|------|------|
| Gflops      | 369 | 529 | 819 | 1103 | 1359 | 1387 |

- 3. Draw performance curves
- 4. Analyse the performance curves





# Deployment of an MPI application on a PC cluster

Deployment rules & communication scheme 1<sup>st</sup> deployment: using processes and threads 2<sup>nd</sup> deployment: using only processes



### 2<sup>nd</sup> deployment: using only processes Deployment strategy



- -rank-by ?
- -bind-to?
- ./MatrixProduct -klc YY -k 1 -nt ??

- Comms: only 1/16 are expensive! But 8x more steps.
- → Same total volume on the interconnect (see course slides)



## 2<sup>nd</sup> deployment: using only processes TO DO (2)

#### **Questions:**

- 1. Measure performances (Gflops) on 4, 8, 16 and 32 nodes, with -k 1 -klc 16
  - → Use OAR « *batch mode* » with « *myrun* » shell script
  - $\rightarrow$  MODIFY *myrun* shell script and adapt oarsub command
- 2. Compare to previous measurements on Kyle cluster:

| Nb of nodes | 1   | 2   | 4   | 8    | 16  | 32  |
|-------------|-----|-----|-----|------|-----|-----|
| Gflops      | 367 | 562 | 862 | 1290 | ••• | ••• |

- 3. Draw performance curves (superpose with 1<sup>st</sup> deployement curves)
- 4. Analyse the performance curves

```
mpirun –np XX=?? –machinefile machines.txt

–map-by ppr:?:???

–rank-by ?

–bind-to ?

./MatrixProduct –klc YY=16 –k 1 –nt ??
```



### TD2-3/Lab-2 – Part 1: Deployment of an MPI application on a PC cluster

