
A Grid Architecture for Comfortable Robot

Control

Stéphane Vialle1, Amelia De Vivo2, and Fabrice Sabatier1

1 Supelec, 2 rue Edouard Belin, 57070 Metz, France
Stephane.Vialle@supelec.fr, sabatier fab@metz.supelec.fr

2 Universitá degli Studi della Basilicata, C.da Macchia Romana, 85100 Potenza, Italy
devivo@unibas.it

Abstract. This paper describes a research project about robot control
across a computing Grid, first step toward a Grid solution for generic
process control. A computational Grid can significantly improve remote
robot control. It can choose at any time the most suitable machine for
each task, transparently run redundant computations for critical oper-
ations, adding fault tolerance, allowing robotic system sharing among
remote partners.
We built a Grid spanning France and Italy and successfully controlled a
navigating robot and a robotic arm. Our Grid is based on the GridRPC
paradigm, the DIET environment and an IPSEC-based VPN. We turned
some modules of robotic applications into Grid services. Finally we de-
veloped a high-level API, specializing the GridRPC paradigm for our
purposes, and a semantics for quickly adding new Grid services.

1 Motivations and Project Overview

This paper introduces a Grid architecture for comfortable and fault tolerant
robot control. It is part of a larger project aiming to develop a grid solution for
generic process control.

Motivations. In several real situations robots must be remotely controlled.
This is because we install robots where an application requires them. It can be
a not computer-suitable environment, for example, for temperature constraints.
Sometimes the building where the robots are is far away from that one where the
computing centre is. In such a case probably the computer maintenance team is
in the computing centre and it could be uncomfortable and expensive to have
some computers near the robots.

Simple robots, like robotic arms, just need to receive commands and some-
times to send feedback. A simple remote application can manage the situation,
but a devoted machine makes sense only if the robot is continuously used. An
integrated environment, like a Grid environment, can run the robotic application
on the first available computer when needed.

Complex robots, like navigating robots, are equipped with sensors and de-
vices acquiring data about the surrounding environment. They send these data

to a remote server running complex computations for deciding robot behavior.
Navigating robot applications sometimes, but not always, need a powerful ma-
chine. A computational Grid could find a suitable machine on the fly, avoiding
to devote an expensive computer to the robotic system.

Finally, a computational Grid can be useful and comfortable in several other
situations. It can automatically switch to an unloaded computer when the cur-
rent one gets overloaded, guaranteeing some QOS to time-constrained robotic
applications. Some applications are embarrassingly parallel and a Grid can offer
a different server for each task. A single application execution is not fault toler-
ant for critical missions. A Grid can automatically run the same application on
different machines, so that if one fails, another one can keep robot control. In
a robotic research environment, a Grid allows remote partners to easy share a
robotic system.

Project Roadmap. In 2002 we started a four-step project about remote robot
control across a Grid. A careful evaluation about delay, security policies, Inter-
net uncertainty and so on [4, 6] was mandatory and the first step was about
it. We worked with a self-localization application for a single navigating robot
[7], using ”ssh links” and a simple client-server mechanism. We focussed on ad-
hoc overlap techniques for amortizing the Internet communication, and at the
end we achieved a reasonable slow down [8]. In the second step we built and
experimented a Grid based on a secure VPN and DIET [1]. We added a naviga-
tion module, we turned both modules into Grid services, and we designed and
implemented an easy-to-use and easy-to-expand robotic API [2]. In our Grid
configuration the robot, a client and some computing servers were in a single
site in France, while another server was in Italy. The third step is a working in
progress. Using our API we quickly and easily added a lightness detection Grid
service for environment checking. Then we extended the Grid with other two
sites in France, each one hosting just a computing server. Finally we added a
second robot (a robotic arm) and a related control module. In the fourth step we
will investigate the way to adapt our software architecture to the Globus mid-
dleware. The current solution is very suitable for our applications, but Globus
is an example of more generic and standard middleware.

2 Robotic Applications and Grid Testbed

Hardware Resources. The physical resources on our Grid are two robots,
some PCs at Metz Supelec campus, two PCs in two different sites in Metz and a
PC at Salerno University, see figure 1. Our robots are an autonomous navigating
Koala, with several onboard devices, and a robotic arm. Both are connected to
external servers through serial links. Each server is a devoted PC controlling
basic robot behaviors. All robotic applications are clients of these servers.

Grid Environment. We chose the DIET [1] (Distributed Interactive Engi-
neering Toolbox) Grid environment. It supports synchronous and asynchronous

PC
X1

PC
QX1

PC
QX2

computing servers

PC robot
server

serial
link

PC

PC client
PC

VPN
firewall &
gateway

router

Supelec Metz campus, France
Salerno University, Italy

PC

comput. serv.

router
PC

firewall

INTERNET

PC

comput. serv.

router
PC

firewall

PC

comput. serv.

router
PC

firewall

2 sites at
Metz,

France
PC

DHCP
DNS

LDAP
PCrobot

server

serial
link

Fig. 1. Grid Testbed for robot control: 2 robots and four sites.

Grid-RPC calls [5], and can be considered a Grid Problem Solving Environment,
based on a Client/Agent/Server scheme. A Client is an application that submits
a problem to the Grid through an Agent hierarchy. This avoids the single Agent
bottleneck. Agents have a Grid Servers list and choose the most suitable for a
Client request, according to some performance forecasting software.

DIET communication is Corba-based, but this was a problem for our insti-
tutes security policies. In order not to relax our respective security levels, we
created an IPSEC-based VPN [3]. This just requires the 500/UDP port opened
and the ESP and AH protocols authorized on the destination gateway.

Robotic Testbed Applications. The testbed application for the robotic arm is
a simple action loop, while the testbed application for the Koala robot consists of
three complex modules: self-localization, navigation and lightness detection. Our
robot navigates in dynamic environments, where no complete pre-determined
map can be used. Artificial landmarks are installed at known coordinates. When
switched on, the robot makes a panoramic scan with its camera, detects land-
marks and self-localizes [7]. Based on its position, it can compute a theoretical
trajectory to go somewhere. For error compensation, new self-localizations hap-
pen at intermediate positions. During navigation the robot checks the environ-
ment lightning and, eventually, signals problems. For this purpose it moves its
camera and catches images. The Koala Server always sends its clients JPEG-
compressed images.

3 Software Architecture and Grid Deployment

Figure 2 shows our Grid architecture. At the toplevel, a Grid application is al-
most like a classical application. It calls RobGrid API functions (see section 6)
to achieve Grid services. Our Grid services implement robotic application mod-
ules, so that they appear as high-level robot commands, such as ”Localization”

Serial link
driver

TCP sockets

Buffered client-server
mechanism

Devoted robot server

Redundant GridRPC calls

High-level robot commands on the Grid

DIET (Grid) middleware
(based on Corba bus)

VPN middleware
(based on IPSEC)

Ethernet
protocol

Internet
protocol

DIET API (GridRPC)

Serial-link robot commands

Simple robot commands

Compounded robot commands

Buffered client-server
mechanism

TCP sockets

Robotic application on the Grid

High-level RobGrid API,
and Grid services

Low-level robot
services G

rid
 m

id
d
lew

a
re

Grid applications

High-level
DIET interface

Fig. 2. Software architecture overview

or ”Navigation”. Users can call them concurrently, but in this case they are
responsible for robot devices coordination and synchronization.

We implemented our Grid services using the DIET GridRPC interface, ac-
cording to the RobGrid API semantic rules (see section 5). Depending on the
service, it can make a synchronous call to a low-level service (to control just
one robot device), an asynchronous call to a low-level service (to simultaneously
control more robot devices), or several concurrent asynchronous calls to low-level
services, for example to run redundant computations on different Grid servers.
When a Grid service runs redundant computations, it waits just for the first one
to finish, ignoring or cancelling the others. All these details are hidden to the
programmer that can focus on robotic problems.

Each low-level robot service is implemented as a three layers stack. A buffered
client-server mechanism allows different and/or redundant tasks to concurrently
access a robot server through TCP sockets. This supports the fault tolerance
strategy of our grid (see section 4). Finally a serial link driver runs on each
devoted robot server.

The Grid middleware consists of the DIET API, a Corba bus and a secure
IPSEC-based VPN. We configured IPSEC so that our grid has a main node at
Supelec, including a LAN segment and a gateway-and-firewall PC. Each of the
other three sites have just a stand alone computer, with a lighter configuration.
It does not include a gateway, so that the stand alone PCs can only communicate
with the main node. The client machine can access all Grid services only if it is
on the main node. Of course this solution is not suitable for a larger Grid and
we are currently working for removing this limitation.

IPSEC requires just the 500/UDP port for security keys exchanging, and the
AH and ESP protocols for secure communication. This made possible to deploy
an IPSEC-based VPN without changing our local security policies.

rsrc directory

serial link
driver (object)

Robot
server
PC

Robot Server: multithreaded
& buffered server

global arm command

turret wheelimage rsrc directoryserial link init

serial link driver (object)

Robot
server
PC history

buffers

threads

Robot Server: multithreaded & buffered server

User PC

Client pgm

Computing server PC

- navigation-1 service
- localization-1 service

DIET server A

Computing server PC

- navigation-1 service
- localization-1 service

DIET server B

PC on the Grid

DIET Local AgentDIET Master Agent

Computing server PC

- navigation-2 service
-localization-2 service

DIET server C

serial link

VPN1 - VPN-Corba-DIET

2 - VPN
Corba
DIET

2 - VPN-Corba-DIET

4 - VPN-TCP 3 - VPN-TCP
ItalyFrance

serial link

"koala"

robotic
arm

Fig. 3. An operation sequence example

In figure 3 there is an example of (Koala) robot control across our Grid.
The client application, on a client PC, requires some Grid services through the
RobGrid API. The underlying DIET functions contact the DIET agents running
somewhere on the Grid to know the addresses of the most suitable computing
servers. Then the user program contacts them directly through the DIET proto-
col on the Corba bus, and each computing server establishes a direct communi-
cation with the Koala Server, using TCP sockets instead of the DIET protocol.
This way camera images to be sent to the Grid servers can avoid Corba encod-
ing. After processing, only small results (such as a computed localizations) has
to be sent to the client machine across the Corba bus.

4 Low-level Robot Services

Devoted Robot Servers. A robot is a set of independent devices (wheel,
camera, infra red sensors, articulation, grip. . .), that can be considered as a
set of independent resources accessible through related elementary or low-level
services.

A devoted robot server collects all elementary services for its connected robot.
Each service is attached to a different port (see the bottom of figure 3) and
is multithreaded, so that it can serve several clients. If necessary, it can also
lock the related resource. For example, several clients (actually Grid servers)

Client machine Grid servers Low level robot server Robot

command
command
algorithm

sequence of serial
link command

sequence of serial
link command &

history buffer usage

robot actuors

robot sensors

high-level
grid services

low-level
grid services

resource
services

application
program serial

linkTCPDIET

Fig. 4. Translation steps from an application command to robot device commands

can simultaneously connect to the camera for taking images while the robot
navigates, but only one client at a time can drive the camera motor.

Resource Directory Service. In order to make the Grid servers independent
from the robot server, we added a resource directory service (see the bottom of
figure 3). Clients have just to know its port number for achieving the directory
of all available resources and related ports. This way low-level robot services
upgrades have no impact on Grid services.

History Buffers. Redundant computations require the same robot data for
all redundant clients, so we associate a number of history buffers to each robot
device. On figure 3 each robot resource has three buffers. Each Grid service has
a default number of history buffers, but applications can modify it.

Before to reset a history buffer, we have to consider that several redundant
Grid services can be using it. Each Grid service needs a reset strategy depending
on the related robot device and on the Grid service algorithm. All reset strategies
are implemented in the RobGrid API (see section 6).

Slow Grid servers asking for too old execution are rejected and finally can-
celled. However, slow servers get results faster because they have not to wait for
robot actions. So, few servers are actually rejected and cancelled. If the network
load changes during the execution, the Grid server that sends the new next com-
mand may change too. In this case the robot server goes ahead, driven by the
new fastest Grid server.

5 Grid Services

Grid services implement robotic application modules and, of course, we can add
other of them in future. Our RobGrid API introduces a semantics for Grid service
programming. This makes Grid service development easy for robotic researchers.

For adding a new Grid service it is not required to deal with low-level details
and to manage the communication with the robot server. Grid services have just
to implement four sub-services and to define a reset strategy for history buffers:

– Connection. This is done by a generic Grid service that contacts the re-
source directory service, asks for the required TCP port and connects the
application to a low-level service.

– Disconnection. This is done by a generic Grid service that closes the ap-
plication connection to a TCP port.

– History Buffer Reset. This is a simple reset request for one of the history
buffers associated to the related device. An index identifies the required
buffer, according to the buffer reset strategy of the Grid service.

– Robotic Command Execution. This is something like navigation(x,y,theta).
Grid services execute each high-level robot command calling the staked up
low-level robot commands. Each stack layer decomposes a higher-level com-
mand in more simple commands. For example the navigation command
above can include move straightforward(x,y). At the bottom of the stack
there are basic commands (serial link commands) to be sent to the devoted
robot server across TCP sockets. Here the serial link driver gets the robot to
execute the lower-level commands. Figure 4 illustrates the translation steps
from an application command to robot device commands.

We experimented our semantic rules adding a new Grid service. It implements
the lightness measurement module for the navigating robot application. Then we
extended our testbed with a robotic arm and a related application module. The
same low-level robotic library drives both the robotic arm and the navigating
robot. In order to integrate the arm application module we added a new Grid
service and related low-level services. In both cases we encountered no major
difficulties.

6 The RobGrid API

To make the robotic application development easy, our RobGrid API offers
classes and objects for Grid service interfacing. They hide DIET communica-
tion details and automatically initialize some DIET data structures. The appli-
cation has to explicitly call three sub-services of each Grid service: connection,
disconnection and command execution. RobGrid provides very friendly functions
for this purpose. The buffer reset sub-service, instead, is called in a transparent
way, according to the predetermined reset strategy of the Grid service which is
implemented in a RobGrid object.

When creating a local interface object, a user just specifies a redundancy
factor. The local interface object chooses the requested Grid servers, waits for
the first one to finish, cancels the others, and returns the results.

Moreover, it is possible to request a Grid service through a local interface ob-
ject in an asynchronous way. The API provides functions for testing and waiting
for a service completion. See [2] for details about RobGrid API usage.

7 Experimental Results

Experimentation on a Local Sub-Grid. In real conditions, researchers work-
ing on new control algorithms are near the robotic system, for avoiding unex-
pected problems. A comfortable solution is to use a laptop, a wifi connection and

 0
 20
 40
 60
 80

 100
 120

 0 2 4 6 8 10 12 14 16 18 20 22 24
E

xe
cu

tio
n

tim
e

(s
)

date (h)

Supelec - Salerno-Univ
Supelec LAN

Fig. 5. Limited slow down across the Internet

a computing server for large computations. The wifi connection allows to control
the robot and to walk around the robotic system when needed, and a comput-
ing server avoids to overload the laptop. But generally a computing server is a
shared resource and can be loaded. A local grid including several servers can
choose an unloaded machine on the fly. It can also run redundant computations
on different servers and get the first available result.

Table 1 shows experimental performance on a local sub-grid for the self-
localization module. We run redundant computations for critical tasks on several
servers and wait for the first to finish. Execution time decreased until 9.5-8.5s
against 13.5s measured with a single shared server. Last columns of table 1 show
there is no remarkable overhead using DIET on this benchmark.

Performance Across the Internet. We measured the self-localization per-
formance when the localization service runs in Italy. During 24 hours its average
execution time elapsed from 15.5s during the night up to 100s during the day
(see figure 5). In both cases remote localization succeeded and during the night
the slow down was limited to a 2 factor compared to a local computation. So,
running robot control services in Italy can be an interesting solution during the
night.

Fault Tolerance. We experimented a complete long application for the navi-
gating robot, with several localization and navigation steps, on the whole Grid.

Table 1. Execution time on a local sub-grid for the self-localization service. Devoted
resources and overloaded laptop are not real situations

Laptop-wifi Laptop-wifi+local sub-Grid Laptop-wifi+devoted rsrcs
Basic pgm Optimized pgm One Grid N redundant One server One server

(Std load on (Overloading server Grid servers across an across a
the laptop) the laptop) unloaded Grid ssh link

14.34s 11.23s 13.5-10.5s 9.5-8.5s 8.65s 8.65s

Table 2. Execution time of the localization Grid service on different nodes

Grid Computing PC server Desktop PC Computing PC server at
machines at Supelec (France) at Metz (France) Salerno University (Italy)

day run 9.5s-8.5s 21.5s-23.7s ≈ 100s (large variations)

night run 9.5s-8.5s 21.5s-23.7s ≈ 15.5s

Robot camera was simultaneously controlled by two Grid servers, one in France
and the other in Italy. We killed the local server and the robot camera con-
tinued to execute its panoramic scans, slower, controlled by the remote server
from Italy. Then we run again the server in France, and the client application
speeded-up. So we achieved a fault tolerant behavior when a server went down,
avoiding the robot mission failure.

Even if the localization slow down was significant during the day, it was
limited to some parts of the application and had a reasonable global impact.
The whole application slow down was limited to a 2.5 factor during the day
(252s instead of 102s).

First Scalability Experiment. To test the scalability of our Grid architecture,
we added a new module to the navigating robot application (lightness measure-
ment service), a new robot (a robotic arm) and 2 new nodes in the grid (2 PCs
in two different areas in Metz). From a configuration point of view, we had a
little trouble to extend the VPN and the Corba bus to PCs with dynamic IP
addresses. Grid gateway and firewall configuration has to be updated each time
an IP address changes.

About performance, we registered no slow down when our servers controlled
both the robots simultaneously. Robot localization on servers from the new nodes
took between 21.5s and 23.7s during the day. These nodes have low-speed con-
nections, that is download at 512 KB/s and upload at 128 KB/s. They appeared
interesting solution for redundant computations during the day, while the Ital-
ian server is a better solution during the night (see table 2). A larger Grid with
several nodes improves the capability to find computing resources at any time
with limited slowdown.

8 Conclusion and Perspectives

During the first steps of this project we built and experimented a secure Grid
for robot control. We developed a friendly API for application programmers, a
Grid semantics for high-level service developers, and low-level services supporting
concurrent and redundant requests to robot devices. We obtained a comfortable
and efficient environment for robotic experiments, and, finally, we showed that
this Grid is easy to extend.

Currently we are working for adding new robots on different sites, and for
allowing client applications to run from any Grid node. Next step is a porting
of our software architecture on a more standard grid middleware, like Globus.

But our final goal remains a more generic Grid for process control, allowing re-
searchers and engineers to easily share physical processes and related computing
resources.

Acknowledgements

This research is partially supported by Region Lorraine and ACI-GRID ARGE
research project.

Authors want to thank Hervé Frezza-Buet for low-level robot library devel-
opment, Alexandru Iosup for optimized versions of the navigating robot appli-
cation, and Yannick Boyé for preliminary implementation on the DIET environ-
ment.

References

1. F. Lombard J-M. Nicod M. Quinson E. Caron, F. Desprez and F. Suter. A scalable
approach to network enabled servers. 8th International EuroPar Conference, volume
2400 of Lecture Notes in Computer Science, August 2002.

2. A. De Vivo F. Sabatier and S. Vialle. Grid programming for distributed remote
robot control. 13th IEEE International Workshops on Enabling Technologies: In-
frastructures for Collaborative Enterprises (WETICE-2004). Workshop on Emerg-
ing Technologies for Next Generation GRID, June 2004. Modena, Italy.

3. I. Foster and C. Kesselman. N. Doraswamy and D. Harkins. Ipsec: The New Security
Standard for the Inter- net, Intranets, and Virtual Private Networks. Prentice-Hall,
1999.

4. L. Frangu and C. Chiculita. A web based remote control laboratory. 6th World
Multiconference on Systemics, Cybernetics and Informatics, July 2002. Orlando,
Florida.

5. S. Matsuoka J. Dongarra C. Lee K. Seymour, H. Nakada and H. Casanova. Overview
of gridrpc: A remote procedure call API for grid computing. Grid Computing - GRID
2002, Third International Workshop Baltimore, Vol. 2536 of LNCS, November 2002.
Manish Parashar, editor, MD, USA.

6. S.H. Shen R.C. Luo, K.L. Su and K.H. Tsai. Networked intelligent robots through
the internet: Issues and opportunities. Proceedings of IEEE Special Issue on Net-
worked Intelligent Robots Through the Internet, 91(3), March 2003.

7. A. Siadat and S. Vialle. Robot localization, using p-similar landmarks, optimized
triangulation and parallel programming. 2nd IEEE International Symposium on
Signal Processing and Information Technology, December 2002. Marrakesh, Mo-
rocco.

8. A. De Vivo and S. Vialle. Robot control from remote computers through different
communication networks. Internal Report, January 2003.

