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1 Supelec, 2 rue Edouard Belin, 57070 Metz, France
2 Loria, Campus Scientifique, BP 239, 54506 Vandoeuvre-ls-Nancy, France

Abstract. This paper presents a computational self-organizing model of
multi-modal information, inspired from cortical maps. It shows how the
organization in a map can be influenced by the same process occurring
in other maps. We illustrate this approach on a phonetic - motor asso-
ciation, that shows that the organization of words can integrate motor
constraints, as observed in humans.

1 Introduction

In the evolutionary process, the appearance of the cerebral cortex has had dra-
matic consequences on the abilities of mammals, which reach their maximum in
humans. Whereas it can be said that the limbic system has added an emotional
dimension on purely reactive schemes [1], the cerebral cortex has offered a new
substratum devoted to multimodal information representation [2]. When one
considers the associated cost of this neuronal structure in terms of energy needs
and size in the limited skull, it can be thought that the corresponding functions
might be complex but highly interesting from an adaptive point of view.

Basically, the cerebral cortex is often described as a set of topological maps
representing sensory or motor information, but also merging various represen-
tations in so-called associative maps. Concerning afferent connections toward
cortical maps, the topological principle explains that information coming from
sensors is represented along important dimensions, like retinotopy for the visual
case. Moreover, at a lower level of description, some kind of filtering process al-
lows to extract and represent onto the mapping other functional information [3],
like orientation selectivity or color contrast in the visual case.

Concerning cortico-cortical connections, the important role of these internal
links must be underlined. For example, the cerebral cortex and the cerebellum
are reported as having approximately the same number of synapses (1012) [4] and
the big difference of volume between these structures can be explained by the fact
that internal connections are much more numerous in the cerebral cortex (more
than 75%). These internal connections inside the cerebral cortex are observed
as belonging to a map, to achieve the topological representation, but also as
connecting maps, which is fundamental to create associative maps [5, 2].



From a functional point of view, the role of the cerebral cortex has often
been described as unsupervised learning [6]. In the statistical domain, the goal
of unsupervised models like the K-means, hierarchical classification, Principal
Component Analysis (PCA), Independent Component Analysis (ICA) is to cat-
egorize information from the regularities observed in its distribution (as opposed
to an external signal, seen as a teacher or a supervisor) or to select in a high
dimensional space the most significant axes on which to project information. It
must be underlined that such information processing is very consistent with the
cortical organizational principles of topological representation and filtering.

From a modeling point of view, neuronal models are among the most well-
known unsupervised techniques. The central one is certainly Kohonen’s Self-
Organizing Map [7], which has been proposed from its origin as a model of
a cortical map (see also [8]) and has been applied in various sensory domains
(see for example [9] for the visual case, [10] for the auditory case, etc.). Later,
from this simple but powerful scheme, other more complicated models have been
elaborated to fit more closely to the biological reality (cf. for example [11] for the
visual case), but they all rely on the same fundamental principle of competitive
learning, as observed in the cerebral cortex.

Interestingly, it must be noticed that most of these neuronal models lay
emphasis on the representation of one sensory or motor information and not
on the joint organization of several interacting flows of information (a notable
exception being [12]). Nevertheless, evidence from neurosciences indicates that
this function is also present in cortical processing. To tell it differently, the cortex
is not only several self-organizing maps, each one representing its own modality
(or set of modalities in the associative case) and communicating one with the
other, but rather a set of maps acting all together to represent information of
the external world from different but cooperating points of view in a global way.

Of course, such a holistic view cannot be obtained if, as it is often the case,
one unique map is considered in the modeling process. The fact is that several
biological data indicates that the cortical processing cannot be only summarized
by independent self-organizations.

From a connectivity point of view, we have indicated above the important
role which is given to recurrent cortico-cortical connections. This might be con-
sistent with asking for a global consistency in representations on top of simple
local competitions. Several electrophysiological studies have shown that a cor-
tical region can change the kind of information it represents in case of a lesion
(e.g. changing representation of the finger in a lesioned monkey [13]) or in case
of sensory substitution (e.g. tactile stimulation for blind people [14]).

From a representational point of view, several brain imaging studies [15]
have shown that word encoding within the brain is not only organized around
phonetic codes but is also organized around action.

How this is done within the brain has not yet been fully explained but we
would like to present how these action based representations naturally emerge in
our model by virtue of solving constraints coming from motor maps. This model,
called Bijama, is a general-purpose cortically-inspired computational framework



that has also been used for rewarded arm control [16]. It is described in general
terms in section 2, with particular attention to the effect of learning rules in
section 3. Then, the actual use of the model for acoustico-motor integration in
presented in section 4.

2 Bijama Model Features

The features of the model are presented briefly in the following sections. A
more detailed presentation can be found in [17, 16], where the current model is
applied to a simplified version of a target reaching problem with an artificial
arm. This model is referred as the Bijama model in related papers, which stands
for Biologically-Inspired Joint Associative MAps.

2.1 Maps, Units and Competition

The main computational block of the model is a set of computational units called
a map. A map is a sheet made of a tiling of identical units. This sheet has been
implemented as a disk, for architectural reasons described further. When input
information is given to the map, each unit shows a level of activity, depending on
the similarity of the information it receives with the information it specifically
detects, as will be detailed in section 2.2. That activity, noted At, follows a
Gaussian tuning curve in the model: At is a matching activity, that is maximal
if input information exactly corresponds to the prototype of the unit, and gets
weaker as input gets different from this prototype.

When an input is given to the map, the distribution of matching activities
among units is a scattered pattern, because tuning curves are not sharp, which
allows many units to have non null activities, even if prototypes don’t perfectly
match the input. From this activity distribution over the map, a small compact
set of units that contains the most active units has to be selected. Unlike in
SOMs where this decision is made by a centralized “winner-take-all” process,
decision is made here by a numerical distributed process, emerging from a local
competitive mechanism, as in [8].

In order to decide which units are locally the best matching ones inside a map,
a local competition mechanism is implemented. It is inspired from theoretical
results of the continuum neural field theory (CNFT) [18, 19], but it is adapted
to become independent of the number of connections, thus avoiding disastrous
border effects: The CNFT algorithm tends to choose more often units that have
more connections. Thus, the local connection pattern within the maps must
be the same for all units, which is the case for torus-like lateral connection
pattern, with units in one border of the map connected to the opposite border,
for example. Here, the field of units in the map computes a distribution of global
activities A?, resulting from the competition among current matching activity
At. This competition process has been made insensitive to the actual position
of units within the map, in spite of heterogeneous local connection patterns at
the level of border units in the Bijama model, as detailed further.



Fig. 1. Result of competition in a map among the A
t (dark gray) and resulting A

?

(light gray). A bubble of A
? appears where A

t is the strongest in its neighborhood.

The result of this competition is the rising of a bubble of A? activity in the
map at places where At activities are the most significant (cf. figure 1). The pur-
pose of the resulting A? activity is twofold. First, this activity defines the main
activity of the unit: This activity is the one that is viewed by other connected
units in all activation rules detailed further. Second, all learning processes are
modulated by this activity. That means that only units in A? activity bubbles
learn in the map.

The global behavior of the map, involving adaptive matching processes, and
learning rules dependent on a competition, reminds the Kohonen SOM. However,
the local competition algorithm used here allows the units to be feed with differ-
ent inputs. The source of information received by a unit differs from one unit to
its neighbors, because of the stripe connectivity described below in section 2.3.
Another difference with SOM not previously detailed is that, in our model, com-
petition and learning are not separated stages. Learning is dependent on A?,
and also occurs during the A? bubble setting.

2.2 Matching Activity Computation

It has been mentioned previously that competition is computed on the basis of
a matching activity At. As detailed below, this activity is actually the merg-
ing of several matching results, and it may be considered as a global matching
activity. Inside the units in the model, each matching result is performed by a



computational module called a layer. Therefore, a layer in our model is a sub-
part of a unit, computing a specific matching, and not a layer of neurons as
classically reported in various models. It is inspired from the biological model
of the cortical column by [20]. A layer gathers inputs from the same origin (a
map), and computes a matching value from the configuration of these inputs.
As a consequence, the behavior of a unit can be described as the gathering of
several layers. These are detailed in the following.

First of all, some maps receive input from the external world. Each unit in
the map reacts according to the fitting of this input to a preferred input. In the
cortex, the thalamus plays a role in sending inputs to the cortex. In our model,
the layer which tunes a preferred perception is called a thalamic layer. This layer
provides a thalamic matching activity.

One other kind of layer is the cortical layer. It receives information from an-
other map. The connectivity of this layer will be further discussed in section 2.3.
Let us just say for now that its purpose is to compute a cortical matching ac-
tivity that corresponds to the detection of some A? activity distribution in the
remote units it is connected to.

If the map is connected to a number n of other maps, its units have n cortical
layers, thus computing n cortical matching results (one per cortical layer). These
matchings are merged to form a global cortical matching. If the map has a
thalamic layer, the thalamic matching result is then merged to the global cortical
matching, to form the global matching At the competition is performed from.

To sum up, our model stresses the two kinds of cortico-cortical connections
mentioned in section 1: Local connections and inter-map connections. The maps
compute activity bubbles, that are a decision enhancing the most relevant units
from local connections belonging to the map. This decision depends on external
input, computed by the thalamic layer, but also on the state of other maps
through cortical layers, that implement long range cortico-cortical connections.
This computation is a multi-criteria decision, that has complex dynamics, since
it performs a competition from input, but also from the competition that is
performed in the same way in other maps. One consequence of this dynamics,
central to the model, is that the self-organization in a map is modulated by the
organization in the other maps, as illustrated in section 4.

2.3 Inter-map Stripe Connectivity and Disk-Shaped Maps

A cortical layer, that receives information from another map, doesn’t receive
inputs from all the units of the remote map, but only from one stripe of units
(cf. fig. 3). For instance, a map may be connected row-to-row to another map:
Each unit in any row of the first map is connected to every remote units in the
corresponding row of the other map. These connections are always reciprocal in
the model.

This limited connectivity is biologically grounded, as cortical zones are con-
nected to other zones by stripes [2, 3]. Moreover, it has a computational purpose:
If inter-map connectivity were total (if each unit in a map were connected to
every unit in a connected remote map), the number of connections would rise
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Fig. 2. Conditions for stable A
? activity states. On the left, instable state where bub-

bles of A
? don’t stand at intersecting stripes. On the right, stable state: Any other

bubble position in the same stripes on the three non-associative maps would also be
stable.

too quickly as the size and the number of the maps increase and would lead to a
combinatorial explosion. Since this model has been designed to handle multiple
sensori-motor connections, the risk is real and map-to-map connectivity has to
be limited.

A stripe has an orientation that is specific to a map-to-map connection: A
map that is connected to many other ones has a different direction of connection
for each kind of connection. In order to keep the model homogeneous, the shape
of the map must not favor any direction. This is the reason why the maps are
disk-shaped in our model.

Two analogous cortical layers of two neighboring units are connected to par-
allel, adjacent and overlapping stripes in the remote map. Neighboring units
receive close but not identical inputs. That is why a winner-takes-all algorithm
over the whole map isn’t suitable, as already explained.

Through the inter-map connectivity, our model produces resonance between
connected maps: Activity patches in connected maps can only stabilize within
connected modular stripes. The role of reciprocally connected stripes is crucial
for this resonance. Activity At is the basis for inner-map lateral competition
(computation of A?). As this At depends on some cortical activity(ies), computed
from other cortical inputs that are fed with remote A?, bubbles of A? activities
raise in the maps at some particular places: The bubble of activity that appears
in an associative map is at the intersection of the stripes where activity bubbles
coming from the connected maps stand (see figure 2).

In our model, this matching of activity can be compared with a phenomenon
of resonance, as described in the ART paradigm by Grossberg [21], that produces
stable and coherent states across the different maps. It ensures consistency of
the activity bubbles across two connected cortical maps. Since units learning
rate is modulated by their A?, units whose A? are activated simultaneously
in the different maps learn together. We call this coherent learning. Learning



strengthens the connection between these coherent units, so that they will tend
to activate together again in the future.

2.4 Activation and Learning Rules

As mentioned before, cortical and thalamic layers of the units in the model have
to perform a tuning from the input they receive, so that all matchings are merged
to constitute the global matching activity At. This merging concerns all cortical
and thalamic layers, and is computed from a geometric mean. This must be seen
as a tricky way to compute some kind of numerical AND operator. Knowing
these merging principles, let the computation of each elementary matching, and
their associated learning rule, be detailed for both thalamic and cortical layers.

The thalamic layer in the model behaves similarly to neurons in Kohonen
maps. This is a custom defined point in the model, depending on the actual entry
format received by the map. For example, thalamic tuned activation can be a
decreasing function of a well suited distance between the input and a prototype.
Then learning consists of making the thalamic prototype be closer to the current
input. This learning process has to be modulated by A? activity for thalamic
layer to be coherent with the remaining of the model. This is also what is done
in Kohonen maps, where learning rate depends on a decreasing function of the
proximity of a neuron with the winning one. This decreasing function in Kohonen
algorithm is analogous to the A? bubble of activity in the model.

The cortical layers all use the same matching and learning rules. Each cortical
activity is computed from a cortical prototype pattern and the cortical input
pattern, which is actually the A? activity distribution in the connected stripe
of remote units. The layer matching activity has to be high only when both the
A? of a remote unit and the corresponding value in the prototype are high: The
cortical layer detects that a remote unit to which it is highly connected is active,
and thus performs a computational “AND”. The learning is, as for the thalamic
layer, modulated by A?.

A unit learns only when it actively participates in the recognition process,
i.e. when it is at a place where a A? bubble stands. It learns both its thalamic
and cortical prototypes, which creates and then maintains coherence between
the different layers. The full unit model is summarized in figure 3.

2.5 Joint Organization

To conclude on the model behavior, the combination of self-organization and co-
herent learning produces what we call joint organization: Competition, although
locally computed, occurs not only inside any given map, but across all maps.
Moreover, the use of connection stripes limits the connectivity, which avoids the
combinatorial explosion that would occur if the model were to employ full con-
nectivity between the maps. Thus, coherent learning leads to both efficient data
representation in each map and coordination between all connected maps.
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Fig. 3. Full functional scheme: The cortical matching activities, obtained from the
modular stripe inter-map connections, are merged together. The thalamic matching is
merged with the result to form a global matching activity. This activity is then used
in the competition process described in section 2.1

3 Multi-association and Cortical Learning Rules

A multi-associative model is intended to associate multiple modalities, regardless
of however they are related. It must then handle the case where the associations
between two modalities are not one-to-one, but rather one-to-many, or even
many-to-many. This multi-association problem will now be presented on a simple
example.

3.1 Associative units and Multi-association

Let us consider an association between certain objects and the sounds they
produce. A car, for example, could be associated with a motor noise. Certain
objects produce the same noise. As a result, a single noise will be associated
with multiple objects. For instance, a firing gun and some exploding dynamite
produce basically both an explosion sound.

In our model, let us represent the sounds and the objects as two thalamic
modalities on two different cortical maps. Let us now link both of these maps to
another one, that we call an associative map. The sound representations and the
object representations are now be bound together through the associative map
(see fig. 4).

If we want a single unit to represent the “BANG” sound in the sound map,
a single unit in the associative map has to bind together the “BANG” unit with
both the gun and the dynamite units. This associative unit must then have the
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Fig. 4. A multi-association: A sound is associated with two different object, both of
which may produce this actual sound. (a) A single sound unit is connected with the
two object units by a unit in the associative map, that stands at the intersection of
two sound and object stripes: This is possible because the unit’s global connection
strength is not distributed among all connections, but only among active connections
(Widrow-Hoff rule). (b) When a unit’s global connection strength is distributed among
all connections, the sound unit must be duplicated (Hebb rule). See text for detail.



ability to perform multi-associations: It must have a strong cortical connection
to two different units (the gun and the dynamite units) in the same cortical
stripe (see fig. 4a).

If associative units cannot perform multi-associations, the resulting self-
organization process among all maps will duplicate the “BANG” representative
unit. The reason is that, in this very case, an associative unit is able to listen to
only one unit in each connected module. Each instance of that unit will then be
bound, through its own associative unit, either to the dynamite or the gun unit
(see fig. 4b). Moreover, the two object units cannot be in the same connectivity
stripe, or else the model would try to perform multi-association and fail.

In fact, in the associative map, a unit is able to bind all possible couples of
sound and object units that are in the two cortical stripes. Reciprocally, two
given stripes of sound and object units can only be bound through a single
associative unit in the associative map, the one that stands at the intersection
of these stripes. Therefore, since our model uses a logical “AND” between the
different inputs of a unit, that single associative unit must be active each time
one of these sound and one of these objects are active together.

Thus, if a unit can only handle one association, each couple of sound and
object stripes must contain, at most, one associated object and sound couple
of units. The units that represent different object making the same sound, for
instance the dynamite and the gun, must then be on different cortical stripes
(see fig. 4a). The same is true for the two “BANG” units, which represent the
same sound. Actually, the ability of units to handle multi-associations depends
solely on the cortical learning rule used in the model, as we will now explain.
This ability is crucial in the model, as explained further.

3.2 Cortical Learning Rules Requirements for Multi-association

It is the cortical learning rule that enables, or not, a unit to be strongly connected
to many remote units in the same cortical stripe. Therefore, the cortical learning
rule is the key to solving the multi-association problem.

Let us consider first the Hebb/anti-Hebb learning rule. Using this rule, if unit
i is connected to unit j, the weight wij of the cortical connection from i to j is
updated through :

δwij = δA?
i × (A?

j − wij)

where δ is the update rate of the cortical connection weights. Thus, the
connection strength wij between the local unit i and a remote unit j grows
when both i and j are active together (i.e. they are both in an A? activity
bubble). wij decreases each time the remote unit j is inactive while the local
unit i is active.

Therefore, if unit i and j are always active together, wij will grow to reach
the maximum weight. Consider now the case where unit j is active, for instance,
half of the time when unit i is active, and remote unit j ′ is active the other half
of that time. Both wij and wij′ will only reach half the maximum weight. Since



cortical activation is computed on the base of the wik × A?
k, the cortical input

from j (or j′) can be quite weak when A?
j (or A?

j′ ) is strong, just because many
A?

j′ were correlated to the A?
i activity.

Since only the most active units are inside the A? activity bubble, a local
unit i can be active only if its cortical activities are high enough. Therefore,
because of competition, local unit i can only be active if its connection weight
to some remote unit j is high. This is the reason why, using the Hebb/anti-Hebb
learning rule, a unit i can be activated by a unit j if A?

j is the only one that is
correlated to A?

i .
This result is actually due to the following: The global connection strength

of the local unit i for a given cortical stripe is at every time distributed among
all connected remote units j. Since that connection strength must be high for
some connection, it is concentrated on a single remote unit, which means that all
other remote units are very weakly connected to the local unit. The end result
is that the local unit binds together a single remote unit per stripe connection.

As a consequence, the model cannot represent a situation where a unit in a
map should be bound with multiple units in the other remote maps: It cannot
handle multi-associations. The only way to effectively associate a given thalamic
input in a map to two different thalamic inputs in another map is to have it
represented by two different patches units (see fig. 4b).

This can be avoided if the cortical learning rule allows a unit to be strongly
associated with multiple units for each cortical stripe. A cortical learning rule
that allows this is the Widrow-Hoff learning rule.

3.3 Widrow-Hoff Learning Rule and Consequences for

Multi-association

Using a learning rule adapted from the Widrow-Hoff learning rule, if unit i is
connected to unit j, the weight wij of the cortical connection from i to j is
updated through :

δwij = δ(A?
i − ω) × (A?

i − Ac
i ) × A?

j

where δ is the update rate of the cortical connection weights, Ac
i is the cortical

activity of a unit i, and ω is the decay rate of cortical connections. Here, cortical
activity Ac

i =
∑

j wijA
?
j is seen as a predictor of A?

i . When both the local unit
i and the remote unit j are active together, if Ac

i is lower than A?
i , wij grows,

and if Ac
i is higher than A?

i , wij decreases. wij also decreases slowly over time.
Here, the global connection strength of the local unit i for a given cortical

stripe is distributed among all active remote units j, and not among all remote
units. As with the Hebb/anti-Hebb rule, because of the local competition, the
connection strength wij between i and a unit j must be high. However, here,
raising wij doesn’t imply lowering all wik for all k in the remote connection
stripe. Raising wij will only lower wik if j and k are active at the same time.

However, since only a small A? activity bubble is present on each map, most
remote units in the connection stripe cannot be active at the same time. Thus,



the local unit i can bind together multiple units in a given stripe connection
to a unit in another stripe connection. This is the reason why the use of the
Widrow-Hoff learning rule in our model leads to multi-map organization as in
fig. 4a.

Solving the multi-association problem has one main benefit: The maps need
fewer units to represent a certain situation than when multi-association between
unit is impossible. Moreover, since instances of a given thalamic input are not
duplicated in different parts of a cortical map, it is easier for the model to per-
form a compromise between the local organization and the cortical connectivity
requirements, i.e. joint organization is less constrained.

4 Model behavior on a simplified example

4.1 The Phonetic-Action Association Problem

Several brain imaging studies [15] have shown that word encoding within the
brain is not only organized around purely phonetic codes but is also organized
around action. How this is done within the brain has not yet been fully explained
but we would like to present how these action based representations naturally
emerge in our model by virtue of solving constraints coming from motor maps.

We therefore applied our model to a simple word-action association. A part
of the word set from the European MirrorBot project, which is a 3 year EU-
IST-FET project, was used in a “phonetic” map, and we tried to associate these
words to the body part that performs the corresponding action. One goal of
this project is to define multimodal robotic experiments and the corresponding
protocols are consequently well suited for this task.

4.2 Phonetic and Motor Coding

The phonetic coding used in our model is taken from the MirrorBot project. A
word is separated into its constituting phonemes. Each phoneme is then coded by
a binary vector of length 20. Since the longest word that is used has 4 phonemes,
each word is coded by 4 phonemes, and if they have less, they are completed by
empty phonemes.

The distance between two different phonemes is the Cartesian distance be-
tween the coding vectors. The distance between two words is the sum of the
distances between their constituting phonemes. While we are well aware that
this is a very functional way to represent the phonetic distance between two
words, it is sufficient in order to exhibit the joint organization properties dis-
cussed in this paper.

The actions are coded in the same way as the words: There are 3 different
input actions (head action, body action and hand action), and each action is
coded as a binary vector of length 3. The distance between two actions is, once
again, the Cartesian distance between their representing vectors.

Each word is semantically associated to a specific action. The word-action
relationship is shown on figure 5.
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Fig. 5. Word-Action Relationship

The thalamic prototypes (i.e. external inputs) of the motor and the phonetic
units are, respectively, coded actions and coded words. However, these do not
necessarily correspond to real input words or actions: These prototypes are vec-
tor of float values, not binary ones. The prototype of a unit, in the figures of
this section, is represented as the nearest “real” input, in term of the distance
previously discussed.

4.3 Interest of Associative Learning

Our model fundamentally differs from a classical Kohonen map since this lat-
ter one is somehow topologically organizing information against the sole notion
of distance between inputs and prototypes. Thus if we were to use a Kohonen
map to represent words from the MirrorBot grammar (encoded as a phonetic
sequence), a consequence of the Kohonen algorithm and existing lateral interac-
tion between units would be an organization toward similarity relation of word
codes only (i.e. two words having similar code would be represented by the same
prototype or neighbor prototypes) as illustrated in figure 6. This kind of rep-
resentation is not satisfactory in the sense that it is totally disconnected from
other maps and does not take any semantics of words into account.

4.4 Emergence of Action Oriented Representation

Let us consider three maps, one for word representation, one for action repre-
sentation and finally an associative one that links word to action (cf. figure 7).

The central point of our model is that coherent learning within a map depends
on some other maps, so that the inter-map connectivity biases the convergence
to a particular self-organized state, when self-organization alone would have
allowed for many more possible ones. The final state of organization in each
map must allow the bubbles to be set up at intersecting cortical connection



Fig. 6. Two different results of word classification by a Kohonen map based on purely
phonetic representations. Words representing eye action (white), hand action (gray) or
body action (stripes) are spread all over the map without paying any attention to the
underlying semantic of words.

stripes, solving inter-map constraints as the one illustrated on fig 2. The cortical
maps perform an effective compromise between the local and remote constraints.
Remote constraints, coming from the architecture, makes activity bubbles have
strong cortical connections to each other. Local constraints, coming from the
thalamic layers, requires bubbles of activity to raise where the phonetic or action
prototypes best match the phonetic or action input. This compromise is poor at
the beginning, but it gets better as learning proceeds.

In the current word-action association, we have chosen to impose a frozen
organization to the action map, in order to illustrate how the phonetic map
self-organizes when keeping coherence with the action map. As an illustration,
let us consider the words “look” and “show”. The phonetic representations of
these words are completely different, so that a Kohonen map classifies them in
different parts of the map (cf. fig. 6). In our model, however, the higher level
associative map linking auditory representation with motor action will use close
units to represent these words, since they both relate to the same action (head
action), see “look” and “show” positions on fig. 8. As our model deals with an
implicit global coherence, it is able to reflect this higher level of association and
to overcome the simpler phonetic organization.

The interesting point to consider here is that word representations (e.g. pho-
netic map) are constrained by some topology that mimics to some extent physical
properties of effectors, i.e. a word unit is dedicated to one action (e.g. hand) and
cannot trigger another one (e.g. head). In order to solve this constraint and to
ensure a global coherence, the model must then organize word representation
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Fig. 7. Schematic view of the model architecture: The word representations and the
action representations are presented in separate maps, that are both connected to an
associative map by reciprocal cortical connection stripes.



Fig. 8. Two simulation results of word representation map after coherent learning has
occurred with our model. Word representations are now constrained by the motor map
via the associative map and, as a result, words that correspond to the same action are
grouped together. Nevertheless, phonetic proximity is still kept.

in such a way that, for example, any “body” word should be linked to a body
action.

As illustrated in figure 8, we can clearly see that the topological organi-
zation found by the model meets these criteria. Within the word map, words
are grouped relatively to the body part they represent: Body action words are
grouped together (stripes) as well as hand action words (gray) and head action
words (white).

However, the phonetic distribution of words remains the most important fac-
tor in the phonetic map organization. Each word is represented by a “cluster”
of close units, and the words whose phonetic representation is close tend to be
represented in close clusters of units. For instance, while “Go” and “Show” corre-
spond to different motor actions, their phonetic representations are close, so that
their representing clusters are adjacent (cf. fig. 8). This illustrates the fact that
the model is actually doing a successful compromise between the local demands,
which tend to organize the words phonetically, and the motor demands, which
tend to put together the words that correspond to the same action. The joint
organization does not destroy the local self-organization, but rather modulates
it so that it becomes coherent with the other map organization.

Finally, having this model based on the self-organization of information pro-
totypes leads implicitly to an organization that can be interpreted since it is
easy to see what a unit is tuned on. This might be useful for further qualitative
comparisons with real fMRI activations.



5 Discussion

The model presented in this paper is designed for a general cortically-inspired as-
sociative learning. It is based on the cooperation of several self-organizing maps,
that are connected one with the other. The design of this model stresses some
computational points, that keeps the model functionally close to the biology.
The first one is locality, since each unit computes its status from the units it
is connected to, without any superior managing process. This leads to the set
up of a distributed competition mechanism, whose emerging effect is the rise
of a bubble of activity at locally relevant places in the map. The second com-
putational point the model stresses is stripe connectivity between maps. From
a strictly computational point of view, this keeps the number of connections
under combinatorial explosion. Moreover, the consequent computation has more
interesting properties. Using stripes actually constraints the model to overcome
partial connectivity by organizing the maps so that related information stands
at connected places. This is supported by resonance between cortical layers, and
leads to organize states in each map according to the organization of the maps
it is connected to. This dependency isn’t explicitly given to the model, it can
be viewed as a side effect of the shortage of connections. This effect has been
observed in our previous work [17] concerning the arm guidance, but it wasn’t
of primary importance in that context. Last, the novelty here is that our model
now uses a Widrow-Hoff learning rule, so that it manages multiple associations
between the units of the different maps in the model. Thus, multiple associations
between inputs do not anymore require a duplication of these inputs, in terms
of different units, on the model’s cortical maps.

However, in the present paper, the property of joint organization the model
exhibits is reported in the framework of semantic coding observed in cortical
areas, since high level word representation appears to be organized according to
the body part the word refers to. The ability of our model to generate such kind
of organization without any supplementary specification supports its relevance
as a functional model of cortical computation, in spite of sometimes less plausible
computational mechanisms that keeps the model tractable for a large amount of
units.

Considering self-organization of many interconnected self-organizing mod-
ules leads to discuss the organization of representations at a global level, that
may appear rather more abstract than the organization resulting from the map-
ping of a mono-modal distribution, as performed by usual unsupervised learning
techniques. In the context of autonomous robotics, that this model addresses,
anything that is learned is obviously a situated representation. Moreover, the
model makes the organization of a particular module in the architecture, dealing
with one specific modality, be understandable according to the other modules,
and more generally according to the global purpose of such an architecture to
address situated behavior. This raises the hypothesis that the influence of the
global behavioral purpose at the level of each modality representation is the very
property that endows this representation with a semantic value. Therefore, this
view of semantics, inspired from biological facts about cortical areas involved in



language, appears to be tractable by a joint organizing model, and to be more
generally suitable for any situated multimodal processing in robotics.
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