
ÉCOLE
SUPÉRIEURE
D'ÉLECTRICITÉ

UNIVERSITATEA
 POLITEHNICA

BUCURESTI

CONTRIBUTION TO PARCEL-6 PROJECT:
DESIGN OF ALGORITHMS MIXING MEMORY SHARING AND

MESSAGE PASSING PARADIGMS FOR DSM AND CLUSTER

PROGRAMMING.

Author:
Mircea IFRIM

Supervisors:
SUPÉLEC Ph.D. Prof. Eng. Stéphane VIALLE

U.P.B. Ph.D. Prof. Eng. ŢĂ ŞNicolae PU

2005

Acknowledgements

The development of this project would have never been possible without the help and
support of many people.

First I would like to express my special gratitude to my two coordinators for their support
and assistance in developing this project:

Stéphane Vialle, professor and senior researcher at Supélec, for letting me experiment
with ideas and for giving me great advice on how to present my findings. He offered me
permanent support in my work and helped me dealing with personal problems related to my
adjustement at Supélec. Our meetings and discussions always helped me to choose the right
next step in the development of this project.

Nicolae Ţăpuş, professor and senior researcher, head of the Computer Science Departa-
ment at the Politehnica University of Bucharest, for his advice regarding this project and for
expressing his confidence in my work. The research group around him was both challenging
and resourceful, and this arouse my ambition in searching for a research career. Knowing him
for the past tow years has been a great privilege to me.

Mr. Constantin Iliescu, professor at the Politehnica University of Bucharest, made
possible the development of this project in France. His special care to all the details of my
applications helped substantially towads my admission at Supélec.

I would like to express my special thanks to all my great teachers that I had at the Po-
litehnica University of Bucharest.

I could not omit people from Supélec, Metz, who made my life easier: thank you Mr.
Claude Lhermitte, Patrick, Claudine, Hervé, Cristian Dan, Veronique, Gilles. I
would like to express my thanks to my bureau collegues for cheering me up and for their
advice: Lucian Alecu, Jacques Henry, Didier Vagner, Jacques Weidig. Thanks to all
my friends for their support.

Last, but not least, I would like to thank to the people I care about, all of them very encour-
aging and caring. Thank you Andreea, Ana-Maria, Mrs. Viki, Iulian and Madlena.

iii

Abstract

The efforts of this project are concentrated on the design and the implementation of a
cellular computing library for clusters and Grids: ParCeL-6.

One of the goals of ParCeL-6 is to decrease the development time for fine-grained appli-
cations. The implementation is done on coarse grained parallel and distributed architectures
in order to take benefit of modern, generic and market available cheap machines. ParCeL-6
has a fine grained parallel programming model that is a successful compromise between the
architecture requirements in order to reach high performances and the developer requirements
to make quick developments.

Currently, there are two submodels of ParCeL-6: ParCeL-6.1 for architectures support-
ing memory sharing paradigm and ParCeL-6.2 for architectures supporting message passing
paradigm.

We ran ParCeL-6.1 on a Linux cluster after we have installed a Distributed Shared Memory
system on it. Kerrighed DSM helped us to transform this cluster in an almost shared memory
system. The results showed that the Kerrighed DSM prefers the ”embarrassingly” parallel
computations applications in which cases it exhibits a very good speedup, but in the case
of irregular memory acceses in the applications, a performance slowdown can be observed.
ParCeL-6.1 worked on the DSM without any problems, but with bad performances.

On the other hand, ParCeL-6.2 was developed on MPI in order to have a library much more
scalable. It cannot implement direct communication mode where cells can directly access to
one another’s output, but instead, it proposes a hybrid communication mode that try to
afford the benefits of both direct, and buffered mode.

Finally, we propose two different ways of investigating. The use of an intermediate library,
SSCRAP, that groups and manages efficiently MPI’s communication is the first way. This
library helps providing a high scalable version of ParCeL-6.2. The other way of investigating is
the use of ParCeL-6.2 on SSCRAP on MPI using a DSM to take advantage of the cluster-wide
shared memory that can be very useful to interactivity and sequential parts of the application.

v

Contents

1 Introduction 1

2 Parallel and Distributed Cellular Languages 5
2.1 ParCeL Project . 5
2.2 Current cellular languages . 8
2.3 The General Features of a Cellular Automata 11

2.3.1 Lattice . 11
2.3.2 Neighborhood . 11
2.3.3 Set of States . 11
2.3.4 Transition Function . 11

3 DSM systems 13
3.1 Introduction to DSM systems . 13

3.1.1 The need of having a DSM . 13
3.1.2 What is a DSM system? . 13
3.1.3 The features of a DSM . 14
3.1.4 The Beginning . 14

3.2 Data Management in DSM systems . 15
3.3 Munin . 16
3.4 Other DSM systems . 19

3.4.1 Parallel Virtual Machine - not a DSM 19
3.4.2 The implementation of Adsmith . 19
3.4.3 Phosphorus . 20
3.4.4 Mermera . 20
3.4.5 CVM . 21
3.4.6 Rthreads . 21
3.4.7 Quarks . 22
3.4.8 TradeMarks . 23
3.4.9 JIAJIA . 23
3.4.10 JUMP . 24

3.5 Optimizing Compiler in Software DSM . 25

4 ParCeL on ShM Systems 27
4.1 Programming model of ParCeL-6.1 . 27
4.2 Introducing the Posix Semaphores in ParCeL-6.1 33

4.2.1 A Brief Description of The Source Files of ParCeL-6.1 33

vii

4.2.2 The Implementation with Posix Semaphores 35

5 Kerrighed 37
5.1 Description of Kerrighed . 37
5.2 The Architecture of Kerrighed . 38
5.3 Kerrighed Installation . 40

5.3.1 Available Hardware . 40
5.3.2 Building the Kernel . 41
5.3.3 Starting Kerrighed Cluster . 43

5.4 Limitations in Kerrighed v1.0.0 . 44
5.5 Benchmarks And Strategies on Kerrighed . 45
5.6 MPI Compatibility . 50
5.7 IPC Compatibility . 53

6 Running ParCeL-6.1 on Kerrighed DSM system 57
6.1 Barrier Comparison: Native Kerrighed barrier and ParCeL-6.1 Handmade barrier 57
6.2 Benchmarking ParCeL-6.1 on Kerrighed DSM 60

7 ParCeL-6 Project from DSM’s point of view 63
7.1 Considerations on future development . 63
7.2 Example of a DSM Application that uses ShMems IPC 65

8 Conclusions and Perspectives 69
8.1 Conclusions regarding the DSM experiment 69
8.2 Perspectives for ParCeL-6 Project . 69
8.3 Previous and Future Steps for ParCeL-6 project 69

Chapter 1

Introduction

ParCeL on Parallel Computers ParCeL is a key component of a project that has the
purpose to allow smart design and implementation of complex cortical neural networks, and
efficient parallel execution on multiprocessor machines. The cortical networks are imple-
mented using a tool that takes in consideration their natural fine grained formalism, without
caring about its mapping on coarse grained parallel computers. For example, all the software
suite in this project can be used to control the movements of a robotic arm through cortical
neural networks running on multiprocessor PCs. The plans for the future are to run this
software, in an efficent and transparent way for the user, on clusters and grids.

In this project, a high level generic and parallel neural model of computation allows a
smart programming based on numerous computing units. ParCeL offers an extended cellular
programming model and maps the small computing units on the big processors of the parallel
machines [60].

A typical ParCeL-6 program is composed of a sequential and classical program that ini-
tializes the management of a cellular network, creates a part of this network, calls some net
routines, and finally removes this cellular network and its data structures. When a cell is
created, a host processor is pointed out and a unique registration number is affected to this
cell. This number allows to identify the cell in all the cellular network, and the cell is created
directly on its host processor, stays on it and executes its computing cycle [60].

The Clusters Cluster computing has its roots in an idea that was developed in the 1960s
by IBM as a way of linking large mainframes to provide a cost-effective form of commercial
parallelism. The cluster computing caught the attention in the 1980s when all that was needed
was available: high perfomance microprocessors, high-speed networks and standard tools for
high performance distributed computing [41].

The term cluster is used in computer science to refer to a number of different implemen-
tations of shared computing resources. Typically, a cluster integrates the resources of two or
more computing devices (that could otherwise function separately) together for some common
purpose.

High performance clusters started back in 1994 when Donald Becker and Thomas Sterling
built a cluster for NASA [57]. This cluster was made up of 16 Intel 486 DX4 processors
connected by 10 Mbit Ethernet, and they named it Beowulf. The Beowulf Project has been
joined by other projects trying to provide useful solutions to turning commercial hardware
into clusters capable of supercomputer speed. These clusters have been used for everything

1

from simple data mining, file serving, database serving, or web serving, to flight simulation,
computer graphics rendering, or weather modelling [57].

Grids and Clusters Altogether In 1999, Ian Foster and Carl Kesselman attempted to
give a definition for grid in the book The Grid: Blueprint for a Future Computing Infrastruc-
ture - more details in [37]:
A computational grid is a hardware and software infrastructure that provides dependable,
consistent, universal, and inexpensive access to high-end computational capabilities.[37]

In the article The Anatomy of the Grid, in 2000, signed Ian Foster and Steve Tuecke,
another aspect of grid was emphasized - the social and political importance: Grid comput-
ing is concerned with coordinated resource sharing and problem solving in dynamic, multi-
institutional virtual organizations [39].

Ian Foster suggests that the essence of the Grid definitions can be concentrated in one
three point list [40]. The Grid is a system that:

• integrates and coordinates resources and users that live within different control domains
- different administrative units of the same company, different companies - and addresses
the issues of security, policy, payment, membership that arise in these settings;

• is built from multi-purpose protocols and interfaces that address such fundamental
issues as authentication, authorization, resource discovery, and resource access. It is
important that these interfaces be standard and open. Otherwise, the system will be
application specific.

• allows its constituent resources to be used in a coordinated fashion to deliver various
qualities of service, relating to response time, throughput availability, and security,
and/or co-allocation of multiple resources types to meet complex user demands, so that
the utility of the combined system is significantly greater than that of the sum of its
parts.

Basically, in a grid all the resources can be scattered across the globe and are being
managed at the resource itself while in a cluster all the resources are physically near each
other and the resources are managed centrally.

SMP, cluster and Grid architectures allow distribution / parallelization of tasks, but sup-
port different granularity. Fine grained applications are appropriate for SMP architectures.
Coarse grained applications can run on all the three architectures mentioned before. Grid
allows to run bigger applications than on one SMP, one cluster, by grouping resources (mem-
ory, cpus, etc.). In the Figure 1.1, there can be observed the relation between clusters and
grids.

A problem encountered both in grids and clusters is the mapping of applications to parallel
machines in a manner that balances the load while minimizing communication. Transparency
and efficiency in mapping data to processors is one of the main purposes of ParCeL-6 on both
heterogeneous and homogeneous parallel machines and this can be achived only through a
solid process of experimentation and implementation.

2

Figure 1.1: Both Grids and Clusters can be used for solving big amounts of computations

3

4

Chapter 2

Parallel and Distributed Cellular
Languages

2.1 ParCeL Project

The languages of the ParCeL family (PARallel CEllular Languages) are destined to provide
natural and fast implementation of distributed, cellular oriented algorithms on parallel ma-
chines, letting the user to declare and to program the cells, a kind of processing elements.
The main purpose of these cellular languages is to efficiently map the fine grained application
architectures to the coarse grained architecture of the contemporary computational machines.

The first language (ParCeL-0/MCV) was born around 1989 as a result of the colaboration
between Supélec and CRIN (Centre de Recherche en Informatique de Nancy) [12].

Then, a new version (ParCeL-1) greatly improved and optimized appeared around 1993-
94 due to the colaboration of Supélec and the University of Orsay-Paris-XI [18]. ParCeL-1
was a tool adapted to artificial intelligence applications and provided transparency on basic
parallel architectures. The main objectives of this cellular language were:

• ability to execute on distributed memory architectures

• ability to hide from the programmer most of the hardware constraints

• ability to implement distributed artificial intelligence and neural networks applications

The begining of the ParCeL project and the evolutions it gave birth to, can be observed in
the Figure 2.1. The current versions of ParCeL had to be fast adapted to the development
of hardware architectures - the law of Moore says that the computers become about twice
more powerful at every 18 months, and also to the applications that were mainly specific sci-
ence fields oriented. For example, the neural networks have a natural parallelism that is not
appropriate for the machine parallelism when speaking about granularity and programming
paradigms. The implementation of neural networks needed a tool to make possible the adap-
tation of the neuronal paradigm to the paradigm of machines. The evolutions of ParCeL-1
followed three main directions [47]:

• the need for a scientific computation cellular language gave birth to ParCeL-2 (devel-
opped at École Polytechnique Fédérale de Lausanne).

5

• the multi-agent systems needed to fast adapt the features of the new architectures to
their needs with the help of ParCeL-3 [48] and ParCeL-5 [49].

• a direction of development was towards connectionists systems of biological inspiration
and this gave birth to ParCeL-4/Hibs [43].

Figure 2.1: General view of ParCel project

In ParCeL-5 - that implements the improved model for multi-agent systems, the cells
followed a running cycle that consisted in several steps. These steps followed the interaction
model found in the multi-agent systems:

• parallel initialisation step (environment, resources, percepts)

6

• activation of agent behaviours

• declaration of action intentions

• resolution of agent conflicts (by the arbitrator)

• execution of actions of winners and non-conflicting agents

• execution of parallel or sequential end-cycle function (user)

• update of the environment and agent percepts

With ParCeL-4/Hibs, another evolution of ParCeL project have been towards connectionists
systems. In the Figure 2.1 can be observed the previous evolution steps of ParCeL project.
ParCeL-4/Hibs has been enriched and evolved giving birth to ParCeL-6. ParCeL-6 is a
parallel cellular language designed for complex neural networks and some physical system
simulation (based on local equations). Currently, two versions of ParCeL-6 are available:
ParCeL-6.1 which is designed for architectures that support memory sharing paradigm and
ParCeL-6.2, designed for architectures that support only message passing paradigm. The
purpose of ParCeL-6 is mainly inherited from ParCeL-4 and followed the next directions:

• a programming model adapted to neural computation for a quick and natural imple-
mentation

• an implementation adapted to coarse grained architectures with few tasks and grouped
communications

Figure 2.2: ParCeL-6.1 Utilization

7

ParCeL-6.1 exhibited very good performances on symetrical multiprocessor machines
(SMP) due to its cheap and basic mechanisms of data sharing. The high level program-
ming model of ParCeL-6.1 provides a semantics that allows natural and fast development of
cellular programs. The programmer can experiment and choose the cell communication mode
that is more appropriate for his application from three available modes.

Grumpf is a client-server based environment for developping fine grained applications. The
client provides some tools for calcul visualization. The server has fine grained programming
model and it makes no compromise with the coarse grained architectures. This is the reason it
needs ParCeL-6 in order to adapt its computation units to the machine architectures. Grumpf
was developed at Supélec by Hérve Frezza-Buet [60].

Escapade is a tool used to solve Problems with Differential Equations expressed in Math-
ematica. The problems with differential equations are solved calling fine grained Grumpf
computations. It is current under development at Supélec with the colaboration of Mops
Laboratory.

ParCeL-6.2 had the purpose to increase the scale when running ParCeL-6 programms,
therefore it was implemented using MPI and had as target hardware architectures large
distributed machines. The way ParCeL-6.2 is used can be observed in figure 2.3.

Figure 2.3: ParCeL-6.2 Utilization

2.2 Current cellular languages

The CA model has been proposed in the 1950s by John von Neumann [1]. Its main purpose was
to simulate complex dynamical processes using a natural inspired parallelism. The last two
decades offered a proper environment for development of several models of cellular automata
different from the original one proposed by J. von Neumann. All these models try to simulate
more and more complex real-world systems and phenomena in fields like chemistry, biology

8

and disjunctive domains having in common the need for computational power (see [51] and
[50]).

The cellular languages are the programming model that follows the computational model
of cellular automata. A general impression on the software development of the CA is that
the encountered problems consist in adapting the fine-grained parallelism of the applications
to the coarse-grained parallelism of the general-purpose machines.

To achieve high performance in the implementation of CA there are two possible alter-
natives. The first one is the design of special hardware devoted to the execution of CA - it
offers speed but not flexibility and it is very expensive. The second alternative is based on
the use of commercially available and coarse grained parallel computers - less expensive, but
not adapted to fine grained applications.

The most significant example of a specialized hardware which has been designed to run
CA simulations is CAM (Cellular Automata Machine) - for details see [32]. Although the
CAM offers a high-level environment for programming CA and can run CA simulations in
an efficient way, it is limited in the size of the automata which can be simulated and in the
number of states per cell. Furthermore, it is a specialized machine which cannot be utilized
as a general purpose computer.

In order to use commercially available and general-purpose parallel computers, the point
of interest need to be moved towards software research. Several parallel cellular environments
have been developed in the latest years. Significant examples of these parallel cellular environ-
ments are CAMEL/CARPET - [58], CANL - [59], CAPOW - [33], CaSim - [38], CAT/CARP
- [22], CDL - [24], CDM/SLANG - [55], Celip - [15], CelLab - [11], Cellas/Fundef - [16], Cell-
sim - [2], Cellular/Cellang - [52], CEPROL - [5], DDLab - [31], Flexica - [54], Hical, LCAU -
[6], Mathematica, Scamper, SCARLET - [23], Sicela, WinCA - [4], NEMO (Neighbourhood
Modelling), CAPE - [17].

About CARPET we can say that it is a high-level programming language based on the
biology-inspired cellular automata theory. It offers support for the development of paral-
lel high-performance software with transparent access to the parallel architecture on which
programs run. CARPET was used in implementing natural solvers of real-world complex
problems, such as forest fire, circuitry simulations, landslide simulation, lava flow models,
freeway traffic simulation, image processing and generic algorithms. A portable MPI-based
implementation of CARPET and CAMEL (called CAMELot) [46] has been implemented on
MIMD parallel computers.

Fine-grained mapping is not only a MIMD/cluster problem, but it is a research topic in
the domain of embedded systems [61]. These systems require control of many concurrent
real-time activities, leading to system designs which feature multiple hardware peripherals
with each providing a specific, dedicated service. The peripherals may increase system size,
cost, weight, power consumption and design time. A solution to avoid such problems is to use
a fine-grained software mapping. Software thread integration provides low-cost concurrency
on general-purpose processors by automatically interleaving multiple threads of control into
one. This simplifies hardware to software migration [61]. The integration of multiple threads
into a single flow of control which executes on a standard uniprocessor is an efficient way to
perform hardware to software migration, that leads to avoidance of high hardware costs [61].

Another kind of problems may be encountered when applications such as fully descen-
tralized multi-agent systems need to be mapped on clusters. A solution may be to group
agents with similar objectives or data - as it is done in the traditional clustering, but with the
constraint that agents must remain in place on a network, instead of first being collected into

9

a centralized database. The agents may be at the beginning scattered all over the network
and have them search in a peer-to-peer fashion for other similar agents. The network traffic
with information and the meaning of the exchanged data must be highly corelated in order
to obtain performances when running such a system on a cluster.

There also appeared a means of mapping applications in a fine-grained way named Lattice
Gas [42]. This could be done by using a parallel library. The lattice gas technique is a fast
developing numerical tool aimed at simulating, on a computer, various physical phenomena
such as complex fluid flows, reaction-diffusion systems or wave propagation processes. In
fact, the Lattice Gas systems consist of cellular automata models that are viewed as a seri-
ous competitors to traditional computational fluid dynamics techniques. The entity in this
model can be an object that must be easy adaptable and must provide reusability. Also the
parallelization schemes must be general.

As we can deduce, fine-grained process modelling can be used as an aid to software de-
velopment. Two levels of granularity may be used in order to do this: one at the level of the
individual developer and another at the level of the representation scheme used by that devel-
oper. Modelling the software development process at these levels includes some advantages
like:

• the production of models that better reflect actual development processes because they
are oriented towards the actors that play these processes

• models that are vehicles for providing guidance because they may be expressed in terms
of the actual representation schemes employed by those actors.

According to [30], three main aspects can be distinguished regarding the different existing
software environments:

• The systems they are intended for

• What do the interfaces to the user and to the machine look like (textual or graphical)

• What features concerning CA are present or missing

It seems that most systems are intended for doing step by step forward simulations of specified
CA starting with specified initial configurations in order to find out what the configuration
will look after a certain number of steps.

For the simulation of CA on a computer there are at least two basic possibilities. One is
to offer a library of routines to be used with a general purpose language. It has the advantage
that the user does not have to learn new programming language syntax, but only the names
and the parameters of the methods in the library. One possible disadvantage of this approach
is that the compiler does not know anything about the special application and hence cannot
do any specific optimizations. This can be overcome by the second approach which is to offer
a special CA programming language.

To simulate a CA on a computer, its main characteristics must be known. In the next
section, the general CA features will be introduced to the reader.

10

2.3 The General Features of a Cellular Automata

2.3.1 Lattice

The structure of a lattice is in most of the programming environments a two dimensional one
because in ordinary cases the coordinates to specify a cell consist in two components. Size of
the lattice is only bounded by the amount of available free memory for the majority of the
programming environments. At least Cellular does some optimizations in the case where the
side lengths of the grid are a power of two. CANL requires the grid to be a square [30].

2.3.2 Neighborhood

Most packages do not impose any restrictions on the neighborhood used. Often a coordinate-
like notation for referencing relative neighbors is available and the neighborhood is given
implicitly by the collection of all relative neighbors referenced. At least CDL allows the
(relative) coordinates of neighbors to be computed by the local transition rule and to be
stored in a structure. This may simplify the formulation of some algorithms but makes the
determination of the neighborhood more difficult [30].

2.3.3 Set of States

In several systems, the size of the set of states is restricted, but in the most cases it is allowed
an arbitrary number of states.

If the set of states becomes too large it obviously becomes important to be able to speak
about its structure and to have a good notation. Often the memory of a cell can be subdivided
into registers which can store values of different data types. This includes numerical as well
as enumeration types. Hical allows to distinguish between integers and natural numbers (and
to specify the exact number of bits to be used). Cellang and CDL allow integer subtypes of
arbitrary ranges. CANL, CARPET, CDL and Hical offer at least one floating point type [30].
Cellang and CDL and also offer the possibility to speak about arrays of values.

2.3.4 Transition Function

In Carpet, CamSim, CANL, CaSim, CAT, CDL, cellsim, Cellang, Ceprol, and Hical the local
transition rule is specified in imperative languages offering some usual operators for building
expressions and the usual control structures. Furthermore many of them allow the definition
of (auxiliary) functions which may be called. In Fundef, SDL and some other languages
the local transition rule is essentially specified as a set of rules. These may contain don’t
cares in the place of cells which have no influence on the resulting state in the current local
configuration. CDM offers the possibility to update cells asynchronously. Most languages
allowing the formulation of probabilistic rules do this via calls to a random function (CANL,
CARPET, CDL, Cellang) [30].

11

12

Chapter 3

DSM systems

This chapter aims at introducing DSM systems to the reader. There are presented research
aspects and a brief history of the DSM systems.

3.1 Introduction to DSM systems

3.1.1 The need of having a DSM

Users often use in their processes shared data. The access to this data can be easily obtained
by interprocess communication. Sometimes this is not enough - for an user it would be much
easier to have transparent access to shared data like programming variables among several
processors. This is the main reason the DSMs appeared.

The main goal of a DSM system is to make interprocess communications transparent to
end-users. The implementations were software, hardware and hybrid.

3.1.2 What is a DSM system?

A DSM system exploits heterogenous computational machines in a transparent way to the
user, as if they were a single and much powerful virtual machine. There are two approaches
on a DSM: the Shared Virtual Memory Model and the Object DSM model.

The first model is similar to the paged virtual memory implemented in mono-processor
systems, except that all the distributed memories must be groupped together into a single
wide address space. The drawbacks of this approach are given by the fixed size of the pages.
The granularity of the shared data is fixed to the page size whatever the type and the actual
size of the data.

In the second model - Object DSM, all the shared data are seen as shared objects, variables
with access functions. The user has only to define which data objects are shared. The DSM
system will take care of the management of the shared objects at creation, modification and
access.

When implementing a DSM system, there are many aspects that must be considered such
as data location, data access, sharing and locking of data, data coherence.

13

3.1.3 The features of a DSM

A DSM implies a mechanism, an architecture, an algorithm, a way of managing the system,
a data coherence policy and a memory consistency model.

The mechanism of a DSM system can be achieved in software (library, compiler, os/user-
space, os/kernel-space), in hardware or it can be a mixture of these two (hybrid).

The Architecture is given by the configuration of the cluster, by the organization of
the shared data (non-structured or structured as types or objects) and by granularity of
coherence maintenance (word, block, page, object, segment). When the algorithm of the
DSM is implemented, there must be considered the way the data is accesed. The access on
the shared data can be SRSW (Single Reader - Single Writer), MRSW (Multiple Readers
- Single Writer) or MRMW (Multiple Readers - Multiple Writers). There also must be
determined a way to realize the Management of the DSM system; we can have centralized,
distributed/fixed or distributed/dynamic management.

There can also must be found a way to maintain the data coherence (Coherence means
that a value returned by a read operation is the one expected by a programmer, the value of
the latest write operation.) - The Coherence Policy, for example WI (Write Invalidate) or
WU (Write Update). In Write-Invalidate, a processor invalidates all other cached copies of
shared data and can then update its own copy without further bus operations. The number of
write runs observed and not their lengths gives the cost in bus cycles. In Write-Update, a
processor broadcasts updates to shared data to other caches, maintaing the coherence. Some
shared blocks may become unshared during the duration of a write run due to replacement.
The updates will therefore be broadcasted only when the data is actively shared.

The Memory Consistency Model can be restricted (strict or sequential consistency)
or relaxed (processor, weak, release, lazy release, entry consistency).

The Strict Consistency says that a read returns the most recently written value and
requires total ordering of requests which implies significant overhead for mechanisms such as
synchronization. Strict consistency isn’t always needed.

Sequential Consistency demands that the result of any execution of the operations
of all processors is the same as if they were executed in a sequential order and in the same
time the operations of each processor appear in this sequence, in the order specified by the
program.

In General Consistency the condition that must be respected is that all copies of a
memory location have the same data after all writes of every processor is over.

Writes issued by a processor are observed in the same order in which they were issued in
the Processor Consistency model, but ordering among any 2 processors may be different.

The Weak Consistency says that synchronization operations are guaranteed to be se-
quentially consistent (critical regions). To access the shared data there are used the synchro-
nization/mutual exclusion techniques which must be properly used by the programmer.

In Release Consistency synchronization accesses are only processor consistent with
respect to each other.

3.1.4 The Beginning

IVY(Integreted Shared Virtual Memory At Yale) is one of the first DSM runtime systems.
It was implemented by Kai Li and Paul Hudak around 1988 and provides the abstraction of
two classes of memory: private and shared. More details about IVY can be found in [7] and

14

[9]. Using as a starting point the operating system Aegis, the implementation of IVY was
made as a set of procedures written in the Apollo DOMAIN Pascal. IVY was installed on a
token ring network of Apollo workstations.

The coherence policy used in IVY is the write invalidate update protocol and the algorithm
implements multiple reader - single writer semantics. To detect the access to shared memory
locations there are used the virtual memory primitives. A page has 1Kbyte. Pages can be
in the read-only, write, or nil modes. The write-invalidate protocol maintains consistency by
invalidating all the read-only copies of a page before allowing a processor to write to that
page. The first read access and the write accesses to a shared page cause page faults; there is
a page fault handler that acquires the page from the current holder. IVY provides a strictly
consistent memory model. There are integrated three page management policies into IVY:

• centralized manager scheme

• fixed distributed manager scheme

• dynamic distributed manager scheme

In IVY, there is an efficiency problem that is inherited in all the three implementations:
successive read and write accesses to a page on a single node cause the page to be transferred
twice (double fault problem). The problem was solved using sequence numbers for every
shared page.

The synchronization to serialize the concurrent accesses to shared memory locations is
implemented using eventcounts - atomic operations on shared counters which are implemented
through the system’s shared memory semantics.

Mirage[10] extends the IVY mechanisms to avoid page trahshing if two processors ref-
erence a single page repeatedly. It was introduced a time interval in which the ownership of
the page will not be forwarded to another processor; during this interval a page is pinned to
a certain processor.

3.2 Data Management in DSM systems

There are four most important management algorithms for DSM systems: Read-remote-
Write-remote, Read-migrate-Write-migrate, Read-replicate-Write-migrate, Read-replicate-
Write-replicate.

When using a Migration Algorithm, data is shipped in the requesting node, allowing
subsequent accesses to be done locally; in fact, the whole block/ page migrates to help access
to other data. A migration algorithm is susceptible to trashing: a page can migrate between
nodes while serving only a few requests. In the Mirage system, we can find a solution to this
problem: a page will migrate only after a minimum number of accesses have occured or it has
ramained a minimum duration in the local memory of a machine. The migration algorithm
can be combined with virtual memory; for example: if a page fault occurs, the memory map
table must be checked; if map table points to a remote page, the page will migrate before
mapping it to the address space of the requesting process. Locating the remote page can be
done by using a server that tracks the page locations, by using some records maintained in
nodes that can direct the search for a page towards the node holding the page or by broadcast
a query to locate a page.

15

The Read Replication Algorithm extends the migration algorithm by replicating the
data at multiple nodes for read access. If a write operation is requested, all the copies at
various nodes of the shared data will be invalidated. There must be maintained an evidence
with the location of all the copies of the shared data. The cost of the write operations is
higher than the cost of the read operations.

Considering the Software Based Replication / Migration Management, there are
two problems that must be solved: finding the current owner of a page in the case of migration
and finding the set of processors with a copy of the page in the case of replication.

The Full Replication Algorithm is an extension of read-replication algorithm - it
allows multiple sites to have both read and write access to shared data blocks. There must
be used a mechanism for maintaing consistency, a gap-free sequencer that assigns a sequence
number to the request and multicasts it to all nodes that have a copy of the shared data.
The receiving nodes will process the requests in order of sequence numbers. Missing requests
(gap in sequence numbers) will be reported to sequencer for retransmission.

In the Read-remote-Write-remote algorithm there is one or multiple servers which
serve the memory pages. This algorithm is easy to implement with the advantage of providing
sequential consistency when implemented with a single server which serializes the request and
response services, but it has some drawbacks: the servers can become potential bottlenecks.

Read-migrate-Write-migrate implements the migration of a page to the new proces-
sors memory upon access. Its main features are: the coherence problem doesn‘t need to be
handled separately and exploits program localities well. It has also some drawbacks:

• when a page migrates, all processors sharing the page need to update their virtual page
to physical block mapping

• the ping-pong effect

Read-replicate-Write-migrate is a popular algorithm for DSMs because it performs well
when reads are dominant operation and many software use the multiple-read/exclusive-write
semantic. It maintains strong consistency and the write operations can be costly inefficient
when unproper hardware is used. Read-replicate-Write-replicate is an algorithm that
performs well when reads are not dominant operation and is very important to have hardware
support in order the write operations to be costly efficient. To maintain strong consistency,
it is necessary to use an aditional protocol.

3.3 Munin

In 1990, a new improved DSM software system appeared - details in [13] and [14]. Munin
was implemented at Rice University in Houston, Texas and was based on a shared memory
parallel programming environment. It was implemented on an Ethernet network of SUN
workstations.

It is the first runtime system for distributed memory machines that uses loosely coherent
memory. It has multiple, type-specific coherence mechanisms and among these mechanisms
there is a new coherence mechanism: delayed updates. The support for variable-size shared
data items is implemented.

Munin was created for programmers that write parallel programs using threads, as they
would on a shared memory multiprocessor. The library routines CreateThread() and De-
stroyThread() are provided.

16

The way to handle the memory faults is similar to the one found in virtual memory system;
on a memory fault the faulting thread is suspended, the associated server to handle the fault
is invoked, the type of the data object is determined, the type-specific fault handler is invoked
and after handling the fault, the suspended thread is resumed. In Munin there are multiple
shared object classes.

The simplest form of shared data are the Read-Only objects. Once they are created,
they can‘t be modified. If a thread attempts to write to a read-only object, an error will be
generated.

A thread can perform the multiple accesses it needs to a Migratory object and only
after that other thread can gain access to that object. To maintain the consistency for the
migratory objects, before the object will migrate to the next thread, the original copy is
invalidated.

If there are many threads that need a concurrent write access to an object, then a Write-
Shared object must be used. In this case, there is no need for the writes to be synchronized
because the updates will modify different words in the object. When two variables reside in
the same consistency unit, such as a virtual memory page, we say that we have false sharing.

The objects that are written by one thread and read by other one or more threads, are
called Producer-Consumer object. To maintain the consistency of those objects, the
object will be first replicated and then updated when the producer modifies it. In this way
the read misses of the consumer threads are avoided. The producer‘s updates will be buffered
until the producer releases the lock that protects the object, so that all of the changes can be
passed to the consumer threads in a single message.

There are also Reduction objects implemented using the fixed-owner protocol. The
operations on a such kind of object are equivalent to a lock acquisition, a read followed by
a write of the object, and a lock release. Such an object can be used when computing the
global minimum in a parallel minimum path algorithm.

When we have an object that is alternately modified in parallel by multiple threads, and
after this follows a phase in which a single thread accesses them exclusively, we say we have
a Result object. In this case, an efficiency problem can appear: when the multiple threads
complete their execution, they unnecessarily update the other copies; the updates should be
send only to the thread that requires exclusive access.

There can be objects that are replicated on demand and are kept consistent by requiring
a writer to be the single owner before it can modify the object - Conventional objects.
Upon a write miss, an invalidation message is transmitted to all other replicas and the thread
that generated the miss is blocked until it has the only copy in the system. A conventional
object is a shared object with no annotation provided by the programmer.

When programming in Munin, the logical connections between shared variables and
the synchronization objects that protect them can be specified by the user call Associate-
DataAndSync(). If access to a particular object is protected by a particular lock, such as
an object accessed only inside a critical region, Munin sends the new value of the object in
the message that is used to pass lock ownership, by avoiding some access misses.

PhaseChange() is a routine that purges the accumulated sharing relationship informa-
tion. This call is useful for problems in which the sharing relationships are stable for long
periods of time between problem redistribution phases.

ChangeAnnotation() modifies the expected sharing pattern of a variable and conse-
quently the protocol that is used to keep it consistent - the system will adapt to dynamic

17

changes. Since the sharing pattern of an object is an indication to the system of the consis-
tency protocol that should be used to mantain consistency, the invocation of this routine may
require the system to perform some immediate work to bring the current state of the object
up-to-date with its new sharing pattern.

Invalidate() deletes the local copy of an object, and migrates it elsewhere, if it is the
only representation of the object, or updates remote copies with any changes that may have
occured.

Flush() advises Munin to flush any buffered writes immediately rather than waiting for
a release.

SingleObject() advises Munin to treat a multi-page variable as a single object rather
than breaking it into smaller page-sized objects.

PreAcquire() routine is used to acquire a local copy of a particular object in anticipation
of future use, and consequently avoiding the latency caused by subsequent read mises.

Munin executes a distributed directory-based cache consistency protocol in software, in
which each directory entry correponds to a single object. When starting an application
program, the Munin root thread starts running. The shared data segment will be initialized,
the worker threads to handle consistency and synchronization functions are created, and the
root thread registers itself with the kernel as the page fault handler of address space. Then
user init() routine must be executed in order to initialize the user‘s environment. If a user
thread has an access miss or executes a synchronization operation, the root thread will be
invoked and it manages the fault. After that, the user thread resumes. Object directory
entries contain the fields:

• Start address and Size which are used as the key for looking up the object‘s directory
entry in a hash table, given an address within the object.

• Protocol parameter bits that represent the parameters for the consistency protocol.

• Object state bits characterize the dynamic state of the object, whether the local copy
is valid, writable, or modified since the last flush, and wheather a remote copy of the
object exists.

• Copyset is used to specify which remote processors have copies of the object that must
be updated or invalidated - a bitmap can be enough to do this.

• Synchq (optional) is a pointer to the synchronization object that controls access to the
object.

• Probable owner (optional) is used to reduce the overhead of determining the identity
of the Munin node that currently owns the object. The owner‘s identity is used by the
ownership-based protocols (migratory, conventional and reduction), and is also used
when an object is locked in place (reduction) or when the changes to the object should
be flushed only to its owner (result).

• Home node(optional) is the node at which the object was created. It is used for a few
record keeping functions and as the node of last resort if the system ever attempts to
invalidate all remote copies of an object.

• Access control semaphore provides mutually exclusive access to the object‘s direc-
tory entry.

18

• Links used for hashing and enqueueing the object‘s directory entry.

The Delayed Update Queue (DUQ) is used to store the pending outgoing write op-
erations in order to provide release consistency. A write to an object that allows delayed
updates, as specified by the protocol parameter bits, is stored in the DUQ. The DUQ will be
flushed everytime a local thread releases a lock or arrives at a barrier.

The Synchronization is not provided through shared memory, but through node in-
teraction - each node interact with the other nodes. Munin provides support for distributed
locks and barriers. A queue-based implementation of locks is used to allow a thread to re-
quest ownership of a lock and then to block awaiting a reply without repeated queries. This
DSM uses a synchronization object directory to maintain information about the state of the
synchronization objects. A queue identifies for each lock the user threads waiting for the lock,
so a release-acquire pair can be performed with a single message exchange if the acquire is
pending when the release occurs. To improve scalability, the queue itself is distributed.

The performance of Munin is an agreement between the resulting reduction in program
complexity and the execution time of the applications. Munin achieved performance within
5-10 percent of message passing implementations of the same aplications. To improve its
performances, it was tried to design higher-level interfaces to distributed shared memory in
which the access patterns will be determined without user annotation. The scalability in
terms of processor speed, interconnect bandwith, and the number of processors was also an
important issue in Munin.

3.4 Other DSM systems

3.4.1 Parallel Virtual Machine - not a DSM

PVM is a software system that enables a collection of heterogeneous computers to be used
as a coherent and flexible concurrent computational resource [20]. The individual computers
may be shared- or local-memory multiprocessors, vector supercomputers, specialized graphics
engines, or scalar workstations, that may be interconnected by a variety of networks, such as
ethernet or FDDI. PVM support software executes on each machine in a user-configurable
pool, and presents a unified, general, and powerful computational environment of concurrent
applications.

3.4.2 The implementation of Adsmith

The development of the networks of workstations had a result in the domain of the DSM
systems. It was needed a low-cost, efficient and portable DSM to use the resources of the
networks of workstations (NOW). At this moment Adsmith was implemented. It is build on
top of the PVM and it presents to the programmers as a user-level library in C++ [21].

This DSM is an object-based DSM and provides primitives to create and allocate shared
objects, accesses to shared objects and operations to synchronize among processes. To improve
performance, Adsmith was provided with support for release memory consistency model, dif-
ferent coherence protocols, load/store memory accesses, object-based multiple writer protocol,
bulk transfer, prefetch, nonblocking store and other specialized accesses.

19

3.4.3 Phosphorus

Phosphorus is, like Adsmith, a DSM developed on top of the PVM. The goals of its imple-
mentation were [26]:

• to provide a platform to experiment with various features of DSM systems

• educational purposes (for students)

• to use new data sharing features

Because it is built on PVM, this DSM was thought to follow the architecture of the PVM
(simple interfaces, portability) and to evolve as PVM evolves.

Phosphorus is comprised of a daemon(phosd) and library functions as PVM is. In order
to make use of the shared data, a daemon resides on each machine. This daemon has the
role of a shared memory manager who is in charge of keeping the shared data coherent. The
sharing unit is the variable. The types supported by PVM through the packing/unpacking
functions are also supported by Phosphorus [26]. The programmer can declare shared arrays
of these types. The management of the shared variables is distributed among a collection of
servers running on the various hosts. A shared variable has a server owner and the ownership
can change dynamically. In order to keep simple and efficient access to the virtual address
space, Phosphorus was designed to reduce the network traffic used to maintain data coherent.
Because there are four different variable access behaviours, four sharing data protocols were
implemented:

• Read Only (Multiple Readers/Write once)

• Migratory (Single Reader/ Single Writer)

• Conventional (Multiple Readers/Single Write)

• Write Shared (Multiple Readers/Multiple Writers)

The access interface consists in a simple set of primitives for declaring, reading, writing and
synchronizing accesses to shared variables.

3.4.4 Mermera

The Memory Behaviour in Mermera combines the behaviours of Coherent Memory, Pipelined
RAM, Slow Memory and Locally Consistent Memory - details in [19]. The memory model is
characterized by the fact that the processes - they may be running on different processors,
share a region of their address space.

Coherent Memory specifies that all the processes agree on the order of all writes that
is consistent with their individual program orderings. In other words, if a process observes
some writes in a certain order then no other process observes those writes in a different order.

Pipelined RAM (PRAM) says that the order of all writes by the same process is
respected by all processes. For example if a process makes two write operations, then no
other process can read them in the reverse order.

Slow memory specifies that when a process has more writes to the same location, those
writes must be ordered in all the processes in the order they were written.

20

Locally Consistent Memory is a consistent memory model much weaker than sequen-
tially consistent memory in which all events appear to be executed on a single processor in
an order consistent with the program of every process. In the model of locally consistent
memory, it appears to each process that all the events it observes are executed on a single
processor in an order consistent with its program.

The Performance in Mermera was analyzed considering the fact that its implementation
mixes coherence with non-coherence [19]. The non-coherent writes have completion times that
are about 20-40 times smaller than coherent write. The completion time includes the time
spent in doing the asynchronous broadcasts and the time spent in executing tasks that are
necessary to process incoming updates. For a given number of processes, the completion time
grows at a rate sub-linear in the number of messages sent. The explanation to this fact is:
the number of messages sent and received is a significant determining factor for completion
time and this number depends on the buffer size and on the number of processes. If we have
small buffer sizes, then a large number of small messages will be generated. To have a more
efficeient transmission, these small messages should be grouped together in larger messages.

The Buffer Size has e significant effect on the performance. If we have a too small
buffer size, the frequency at which messages are sent is high which imposes a high overhead
of sending and receiving messages on the CPU. If the buffer is too large, then the frequency
of messages is low, but the processes will use less recent computed values [19].

3.4.5 CVM

CVM is a DSM system developed at the University of Maryland. This DSM was implemented
to be easilly adapted to the needs of the applications. It has multiple protocol support:
it provides four memory models, single and multiple-writer versions of lazy release consis-
tency, sequential consistency, and eager release consistency. The source code is written in
C++ and is freely available, new classes can easily be derived from a master class allowing
new protocols to be easily incorporated. Therefore, CVM is extensible. CVM supports
multithreading by implementing context switching. CVM can be online reconfigurated
- feature that was implemented using thread mobility. The degree of parallelism, the load
balancing, the minimization of the communication requirements can be achived by thread
migration. Another goal of CVM is heterogeneity: CVM can be executed on heterogeneous
clusters of workstations. To implement Race Detection, it was built a practical online race
detection system that is guaranteed to catch all races that occur during an execution, with a
small overhead. The Tapes are used to allow shared accessed to be recorded, grouped and
manipulated at a very high level. They are implemented in some libraries that are layered
on top of the consistency protocols and synchronization interfaces. These tapes can be used
for improving of the performance: the future accesses can be predicted and the subsequent
misses can be eliminated - the data can be easily moved using these tapes.

3.4.6 Rthreads

Rthreads is an object-based DSM system. To read, to write remote data objects or to syn-
chronize remote accesses, it uses a set of primitives. The primitives are syntactically and
semantically closely related to the POSIX thread model (Pthreads) and consequently, the
precompiler can automatically translate the Pthreads source programs into Rthreads source
programs.

21

A new model of the distributed shared memory was introduced in Rthreads: the global
variables of a Pthreads program are transformed into shared variables in the Rthreads pro-
gram. The operations on the shared data are executed at the locations of the global variables
of each node. The information used for data transfer and conversion in heterogeneous environ-
ments is retrived from the source code by the Rthreads precompiler. Each node participating
in an Rthreads program accesses global variables like a traditional parallel Pthreads program.
These accesses are local and don’t affect local copies of other nodes. Every participating
Rthreads node program may consist of several Pthreads itself that are synchronized by the
according primitives of Pthreads.

Rthreads is similar to Adsmith regarding explicit memory accesses and the implementation
on top of existing communication systems. Rthreads is more flexible in data accesses because
it provides several concepts to vary the granularity of the data sharing. In Rthreads there
are also implemented further concepts for data structures and blockwise grouping of array
elements. Adsmith only allows access to single data items or to complete arrays.

3.4.7 Quarks

The paper describing Quarks was presented in March 1998 at the ”Proceedings of the Third
International Workshop on High-Level Parallel Programming Models and Supportive Envi-
ronments”. Quarks was implemented to be simple and also efficient. It consists of a user-level
library and associated header files that support DSM on collections of Unix workstations.

The features provided by this DSM system are modern and high-efficient: multiple con-
sistency protocols (a write invalidate protocol providing strict consistency, a delayed write
update protocol providing release consistency) and multithreading to mask communication
latency. Quarks provides a simple user interface that allows parallel debugging using gdb.

One of the goals of this DSM system is to reduce the impact of DSM computation overhead.
The optimizations to provide this were:

• It was employed a release-consistent write-update protocol, similar to that employed by
Munin.

• Incoming messages may be handled asynchronously, when the local node is idle or at a
convenient blocking point, rather than invoking a high overhead signal.

• Outcoming messages are sent using non-blocking I/O operations.

• The use of multithreading was avoided within the Quarks runtime to support DSM
operations, because the impact of context switching were very costly.

• Copy creation and memory protection-related system calls are performed while other
pages are being requested.

The Quarks implementation uses as transport layer a Direct Deposit(DD) Protocol. This
protocol enables the sender to manage a reserved receive buffer within the receiving process’s
address space that is obtained when the connection is established. The sender directs place-
ment of messages within that buffer via an offset carried within the message header. DD
uses a system call-based interface for sends to provide safety and flexibility at overhead and
latency costs that are modest. The semantics of DD allow for asynchronous sends. Given
a network interface with DMA capability, the transmission occurs in parallel with continued

22

computation within the user process. DD supports a completely user mode message reception.
On message arrival, a notification object, or note, is written into a circular queue specified
by the conection. This queue can be in kernel or user memory, and can be shared by several
connections within a single process, at the discretion of the user.

The performance of Quarks is very good for one program and reasonable for a number of
others that vary in the emphasis of their sharing behaviour on getpage (producer-consumer).
The source of high performance of Quarks is given by the optimizations on the computa-
tion overhead of DSM. The time spent performing operations such as page fault handling,
synchronous I/O, memory protection manipulation and distributed garbage collection can
seriously impact the rate at which useful user computation is performed.

3.4.8 TradeMarks

Treadmarks is a DSM that supports parallel computing on networks of workstations. It pro-
vides a global shared address space across the different machines on a cluster. Its architecture
took in consideration the fact that a shared memory interface is more desirable from the ap-
plication programmer’s viewpoint, allowing him or her to focus on algorithmic development
rather than on managing communication. The challenge in providing a shared memory inter-
face is to do so efficiently. To this end, TreadMarks incorporates several innovative features,
including release consistency and multiple-writer protocols.

The research in the TreadMarks project includes the integration of compiler and runtime
techniques, the use of multithreading, in particular on multiprocessor nodes, support for large
address spaces, heterogeneity, and scalability. TreadMarks was tested on IBM, DEC, SUN,
HP, x86 and SGI hardware. A port to WindowsNT has also been completed. C, C++,
Java, and Fortran are supported. TreadMarks was developed with support from the Texas
Advanced Technology Program.

3.4.9 JIAJIA

In this DSM, physical memories of multiple workstations are combined to form a larger shared
space. In other DSM systems from the same generation such as Quarks, TreadMarks, and
CVM, the shared address space is limited by the size of local main memory. In JIAJIA, the
size of shared space can be as large as the sum of each machine’s local memories. To provide
consistency, a locked-based cache coherence protocol is proposed to simplify the design. The
protocol is lock-based because it totally eliminates directory and all coherence related actions
are taken through accessing write notices kept on the lock. Compared to the directory-based
protocol, the lock-based protocol is simpler and consequently more efficient and scalable.

A new NUMA-like memory organization scheme which was taken to ease shared mem-
ory management. With the simplicity of this shared memory organization scheme and of
consistency semantics, JIAJIA totally eliminates the complexity of garbage collection, local
address to global address transition, and vector timestamp maintenance. A flexible shared
memory allocation call is provided to allow the programmer to control the distribution of
shared locations.

A home migration scheme is implemented to migrate home pages adaptively according
to the application sharing pattern. A write vector technique is implemented to reduce mes-
sage amount in home-based software DSMs. With this scheme, the faulting processor fetches
only those blocks that are modified since last fetch. An adaptive write detection scheme is

23

implemented to reduce write faults on read-only pages. An new function call jia config() is
provided to turn home migration, write vector, adaptive write detection and other optimiza-
tion methods on and off in the application program.

JMCL comes from JIAJIA specific Myrinet Communication Library. Myrinet was choose
to be used as platform beacuse it has high speed and programming interfaces at multiple
levels. JMCL provides reliability and protection in order message delivery for high level
JIAJIA system.

3.4.10 JUMP

JUMP is a page-based software DSM system for clusters of PCs or workstations. It adopts
the Migrating - Home Protocol (MHP) to implement Scope Consistency (ScC), both of which
improve the DSM performance by reducing the amount of data traffic within the network.
JUMP was implemented as a user-level C library on top of UNIX, and is able to run on
homogeneous clusters of PCs or workstations with SunOS or Linux operating system.

In Scope Consistency, we define the concept of scope as all the critical sections using
the same lock. This means the locks define the scopes implicitly, making the concept easy
to understand. A scope is said to be opened at an acquire, and closed at a release. The
definition of Scope Consistency is: when a processor Q opens a scope previously closed by
another processor P, P propagates the updates made within the same scope to Q.

The Home-Based Protocol in the home-based protocol as adopted by JIAJIA V1.1, a
processor is fixed to hold the most up-to-date copy of every page in shared memory. This
processor is known as the home of the page. Under the home-based protocol, the updates
made by every processor on a page are propagated to the home processor at synchronization
time.

The Migrating-Home Protocol was used in JUMP because it was proved that the
home-based protocol is more efficient than the homeless protocol, the fact that a fixed home
may not adapt well to the memory access patterns of many applications. If the home processor
itself never accesses the page, then the updates made by other processors must be propagated
through the network at synchronization time. If the home can be migrated to the processor
which accesses the page, then the updates made by the new home need not be sent anywhere.
The migrating-home protocol which allows the home location of a page to be migrated from
a processor when serving a page fault.

JUMP vs JIAJIA V2.1 For most applications, the home migration protocol in JIAJIA
V2.1, was outperformed by the MHP in JUMP for 5 out of 6 applications. This means MHP
is more efficient than the home-based protocols. In was observed that the more aggressive
strategy and a wider usage (working on both locks and barriers) accounts for the higher
efficiency of MHP.

The performance in communication can be improved by reducing the software protocol
overhead. Socket-DP is a low-latency communication package with traditional socket interface
to maintain good programmability. The tests showed that the migrating-home protocol is
capable of improving the performance of some applications dramatically, while Socket-DP
introduces modest performance gain on all applications tested. The two enhancements work
together well to improve the performance of DSM applications substantially.

24

3.5 Optimizing Compiler in Software DSM

One of the goals of such a compiler is to insert valid write commitments as much as possible
[36]. First, all the shared memory accesses given in a shared memory program must be
enumerated - shared write detection. Points-to analysis represents all variables as memory
locations. This is a conservative assumption in C. When an input program contains unions
or type-castings, they may generate false alias information, which takes many iterations to
converge. It is important that the input program is type-safe about pointer values, that is
pointer values are not conveyed through non-pointer locations. This prevents the generation of
false alias relations in a program with complex structures. Interprocedural points-to analysis
calculates symbolic locations where variables may point to [36]. Variables and heap locations
are represented with a location set - a tuple of a symbolic base address, an offset and a
stride(step). The compiler interprocedurally calculates points-to relations among location
sets using a depth-first traversal of the graph. A write commitement is inserted after a write
operation using shared address values.

The interprocedural analysis has the merits that the succeeding optimization passes can
perform code motion using pointer information and precise shared pointer information can
decrease the costs of the redundancy elimination pass.

In release consistency model, a shared write is not transmited to other nodes until the
node which had issued the shared write reaches a synchronization. Therefore, it is important
that a write commitment to be placed everywhere from the corresponding shared write to the
first synchronization thereafter. This can be used to remove redundant write commitments.

If we have:

v[x][y]=value1;
if (x==y)

v[x][y] += value2;

Write commitments should be inserted after both assignments. If the first write commitment
will be delaied after the conditional, the write commitment within the conditional will be
redundant. This optimization was formalized as redundancy elimination.

There are many cases in which the write operations are performed into the same contigous
region. If we have a loop, for example:

for (k=1; k <=len ; k++)
v[k]=a[k+1]*b[k+2];

then the write commitment should not be inserted in the innermost loop, but outside the
loop - merging multiple write commitments [36].

25

26

Chapter 4

ParCeL on ShM Systems

ParCeL-6 is a library devoted to cellular programming and to shared memory parallel
architectures:

• it allows fast development of cellular programs;

• it allows easy (automatic) parallelization on multiprocessor machines, including cheap
multiprocessor PCs;

• it allows easy experiment of different cell output propagation methods, to study future
design for cluster and grid architectures.

ParCeL6.1 is the shared memory version of ParCeL-6 for single and multiprocessor machines.
This version is available for both Linux (using Posix Threads) and Windows (using Windows
native threads).

4.1 Programming model of ParCeL-6.1

In order to facilitate the understanding of how ParCeL-6.1 works, the structure of a ParCeL-
6 program must be descrribed. The entities used in ParCeL are called cells - many small
computation units, statically or dynamically created and connected, exchanging data, and
that can run on parallel machines. A typical ParCeL-6 program consists in a main function
beginning with cell definitions: the programmer specifies the functions associated to this cells
(for initial, current and final iterations), and the size and kind of its output. The program
can be considered like a sequential program until it encounters a p6 net creation command.
Then all cells defined are created and automatically distributed on all processors, but cells
are not run. The program continue sequentially, until a p6 net computation command. Then
all cells are activated, on all processors, and run their activation functions one time. The
main function of the ParCeL-6 program continues with a cellular activation loop: the created
cellular network is run many times inside a computation loop, calling the p6 net computation
command. However, some cells can be dynamically created and killed after the cellular
network start, from the main function or from already existing cells. The user can design and
implement static or dynamic cellular networks. Finally, the loop computation finishes, and
the program ends. A ParCeL-6 program is a kind of sequential program defining and running
a cellular network, with cellular net callback.

27

ParCeL-6.1 is a library written in C language, with an API that is voluntary not too large,
and can be linked with C or C++ programs [53].

ParCeL-6.1 uses some concepts that must be known to the reader in order to better
understanding its internal structure: processors, requests, missions, OutConns, permutation
tables.

Processors: ParCeL-6 is structured into multiple processors. These virtual processors are
the ones that control the flow of the program, by performing every command that they receive
- mission. A processor has a number of cells, tables and hash-tables to access them, and some
other structures.

Requests: As the name says, a request is a demand for something. The demand (com-
mand) is called from a cell function with execution delayed to the end of the cycle (after cell
computing step). Results are visible at the next cycle. ParCeL-6.1 has requests defined for
cell creation (CREATERQ) / destruction (KILLRQ), cells connection (OUTINFOGETRQ) /
disconnection (DISCONNECTRQ), response to a connection request (OUTINFOBACKRQ),
local link connections (CONNECTRQ), cell death announcements (KILLSIGNALRQ).

The requests are C structures, with properties specific to every type of request, and they
are stored in request tables that are kept on every processor. This works as it follows: when a
cell wants to create another cell for example, puts a CellCreateRequest in the CellRequestTable.
The request structure contains the destination processor that is meant to execute this demand.
At the next cycle, when the mission that says to execute the cell requests is received, every
processor will access the tables of request of all the others, and will take the requests that are
destinated to it. Then, it executes every one of them, and if it is the case, it stores a response
request for the processor that made the request in the first place.

Missions As explained before, a mission should be seen as command to execute some
particular piece of code. Every processor waits in an idle state a mission, and when it receives
it, it begins to execute the appropriate code for the mission.

From the implementation point of view, a mission is an int value that is sent from the
main processor to all others.

Waiting for a mission is performed with the help of semaphores. The main processor
sends the mission code, and after that it signals the semaphores for every processor that a
new mission is ready to be executed.

Missions available:

• INIT - threads make some local init

• INITPERMUT - threads init their local permutation table (when they are defined)

• NETCREATE - threads create their part of cell net

• NETCOMPUTATION - threads run computation functions of their cells

• NETCELLEVOLUTION - threads accomplish cell evolution request destinated to them
(ex: threads process cell creation requests)

• NETLINKEVOLUTION - threads accomplish link evolution request destinated to them
(ex: threads process cell connection requests)

28

• NETHYBRIDOUTUPDATE - threads reset the refresh flags of their buffered cell output

• NETBUFFEREDOUTUPDATE - threads propagate their pure-buffered cell output

• HALT - threads terminate

OutConns The ”OutConn” states for ”Out Connection”, and it is a structure that is
created when a cell from one processor wants to connect to a cell hosted by another processor
or even on the same one. This structure will contain all the information that are further
needed to access the connected cell.

Permutation tables When a processor starts to execute the cells that it hosts, it can
run them in different order. The user has the option of influencing the order of cell
activation, and if he wants a particular order, he has to provide some permutation ta-
bles for the cell activation (the cell hash-tables will be crossed in the order given by
this tables). The order can be one of the following: P6FORWARD (basic cell activa-
tion case (forward) from the first cell in the hash-table to the last), P6BACKWARD (re-
verse run of the cell hash table), P6ALTERNATE (alternate hash table list order of run),
P6PERMUT (follow a permutation table), P6PERMUTRANDOM (choose randomly the
permutation table), P6PERMUTALTERNATE (follow a permutation table and alternate),
P6PERMUTRANDOMALTERNATE (choose randomly the permutation table).

The parallel implementation of ParCeL-6.1 is based on threads. All threads are launched
at the initialization time by the main thread. Every thread is associated a ParCeL-6.1 virtual
”processor”. The processors communicate with each other through a global space (global
variables), a very fast and convenient way for a shared memory system (Figure 4.1).

Figure 4.1: Global Space

Global space contains the following:

• table of all structures of the processors

• table of load of processors: how many cells on every processor

• tables of requests: all requests from all processors

29

• table of mission codes for all processors

• table of all cells on all processors

• hash-table of cell registrations

• permutation of cell execution

• tables for all types of output (direct, hybrid, buffered) for all cells

• table of all OutConn tables

• table of all OutConn values tables

• table of all OutConn refreshed flag tables

• table of all Out Lock tables

• table of Htable of OutConn already on a processor

Every time one processor needs some data from the structures of another processor, it can
access it directly through the global space.

The structure of a ParCeL-6 processor is the following:

• processor number: the number used to identify the processor

• the total number of processors

• load balancing management data: used when creating cells to determine the future host
of the cell

• cells request tables: contains requests expressed by the cells hosted by this processor.
The requests that are kept in this table are for creation, destruction or for announcing
the death of one cell. These announces are necessary because when a cell dies, all the
cells that have connections open to this cell should close them.

• cell request tables destined to the proc: requests that are issued by cells from all the
processors. Before starting to execute the requests, every processor looks in the ”cell
request tables” of all the others, and copies into these tables the requests that are
destined to him.

• cell back-request tables of the processor: after processing the ”cell requests”, a response
may be needed to be sent to the initiator of the request; these kind of responses are
of the shape of ”back-request”, and they are stored in this type of tables (for example,
when processing a kill request, a kill signal request is sent to every process in order to
announce that this cell has died).

• cell back-request tables destined to the processor: the cell back requests issued for this
processor.

• info request tables of the processor: the connection requests made by the cells of this
processor

30

• info request tables destined to the processor: the connection requests issued for the
processor

• table of local link requests: when making a connection request to a cell on another
processor, a ”local” request is also stored, so that when the connection response comes,
a local linking is performed.

• cells table of the processor: a table of all cells hosted by this processor

• hash-table of cell registration of the proc hashtable of cells used to increase the access
speed to cells.

• current permutation table

• table of direct cell output: output values from the cell that have ”direct” output mode

• table of hybrid cell output: output values from the cell that have ”hybrid” output mode

• table of buffered cell output: output values from the cell that have ”buffered” output
mode

• table of old buffered cell output: output values in the previous cycle from the cell that
use ”buffered” output mode

• tables with the flags for OutConns: this flags say if the OutConn needs to be refreshed
or not

• table of OutConns: the OutConn structures for the processor

• table of OutConn values: the output values of the cells that correspond to the OutConns

• hash-table of OutConns: hash-table of OutConns used to increase the access speed to
OutConns.

The structures of the processors are the most complex ones, because a ParCeL-6 processor
has to contain all the other structures that are needed for computation.

Cell structure (Figure 4.2):

• cell registration: combination of host processor number, creator processor number and
cell number that uniquely identifies the cell

• init function: function that is run at the initialization of the cell

• iteration function: runs at every cycle

• termination function: runs when the cell is killed; removes the cell from the cells table,
cells hash-table and performs other cleaning needed

• current function index: keeps track of the current function from the initialization, iter-
ation and termination

• output information: gives access to the output of the cell; the output contains informa-
tion for the kind of output (direct, buffered or hybrid), the number of output values and
the table to store the values in

31

– local variables of the cell

– access to the next and previous cell

– UserData space: a memory space that can be used by the user to store some cell
specific information he may need.

Figure 4.2: The Structure of ParCeL6 Cell

OutConns structure:

• OutConn status: shows if the cell connected to is still alive or not

• cell register: identification of the cell this OutConn refers to

• out kind: the output kind of the cell (”direct”, ”buffered” or ”hybrid”)

• number of readers: how many cells read from this OutConn

• number of output values of the cell

• pointer on the remote output table for the cell

• output values of the cell

• next OutConn

• refresh flag: shows if this OutConn should be refreshed or not

• lock flag: insures the mutual exclusion of accesses to this OutConn

For some of the data types it needs to store (e.g. cells, output values of the cells etc),
ParCeL-6.1 uses a special type of tables (Figure 4.3). The difference between this kind of

32

table and a vector for example, is that this table can be chained with other tables of the same
kind and that it can also keep track of the free space inside.

For holding the cell structures on a processor for example, ParCeL-6.1 uses this kind of
tables. They can be very useful when there are a lot of cell creation and destruction. When a
new cell is created, first a search is performed through the free space list, and if the necessary
space is found, the cell is stored in the place found. This location is removed from the free
space list. If there is not enough space in the free list space, an entire table is allocated
(because of high execution cost of memory allocation) and it is chained with the existing
tables. The cell is stored in the newly allocated table, and the index for the free space in the
table is set to null. When a cell is deleted, it is removed from the table and a free element
is put in its place and chained in the free space list. In this way, the space allocation is not
performed very often, which saves execution time, and also the space that is no longer in use
can be reused. Another technique for reusing the free space would be to rearrange the table
after every freeing of space, but that would take a lot of computation time, and when a lot
of cell destruction takes place, this would not be a very efficient technique.

Figure 4.3: The Chained Tables of ParCeL6

Because they are heavily accessed the cells and the OutConns are stored in hashtables
(Figure 4.4) to increase the search speed. The entries of the hash-tables are the cell registers,
and for one entry in the hash-table, there is a chain of cells / OutConns. The hashtable for
the cells contains double-chained elements, making possible to cross the chained cells in the
reverse order, while the one for the OutConns is simple-chained.

4.2 Introducing the Posix Semaphores in ParCeL-6.1

4.2.1 A Brief Description of The Source Files of ParCeL-6.1

In the next section the reader can find out the role of the source files of ParCeL-6.1 and
the interdependence between them.

p6type.h This file contains the definitions for all the structures and the enumerations used in
ParCeL-6.1. The definitions are organized by theme (cell, cell requests, management informa-

33

Figure 4.4: The HashTables of ParCeL6

tion used by each processor). Here are defined the structures needed for cell registration, cell
output, cell requests, typedefs for processor/thread informations-management, hash-tables,
load-balancing informations and some other useful typedefs.

p6const.h Here are defined the constant values used in ParCeL-6.1 (like: number of requests
per basic table, number of cells per basic table, number of out values per basic table, number
of locks per basic table, number of flags per basic table, number of OutConn per basic table).

p6GlobalVar.h/c These files are in fact an interface that can be used by any of the pro-
cesses to access the global variables (e.g.: table of processor informations, table of all request
from all processors, table of all cells on all processors, hashtable of cell registrations, table of
all OutConn tables).

p6CellComput.h/c In these files are defined the handling level functions of the cells (the
run of all classic cell computation and the run of cell reactions on net evolution).

p6init.h/c Here are defined some functions to declare/kill cells, to initialize and to free the
resources used in the threads and functions that manage the connections.

p6OutConn.h/c In these files are defined the functions for Out Connections management
(Refresh a connected output, Operations on the OutConn Hash table, Allocate or Free new
OutConn in local table, Allocate or Free new flag in local table, Allocate or Free new OutConn
values in local table, Connection to output of a sending cell, Disconnection of an OutConn).

p6Output.h/c Here are defined some functions to write to the ouput or to read someone’s
output (lock management is included).

p6Mission.h/c When a process wants to broadcast a mission (e.g. Init, Create Cells or
Halt) and all processes/threads should cycle on reading a mission and then execute it.

34

p6Request.h/c The functions for receiving and executing requests are defined here.

p6net.h/c Here are defined the functions for sending and receiving request missions. In
one cycle a cell does: receive request tables, read mission and with the mission does the
appropriate work on the information provided in the requests.

p6tools.h/c The functions for memory management, the hash function and the function
used to get infos on a processor, are defined here.

parcel6.h This file contains the signatures for all the functions used in ParCeL-6.1, tries to
give some explanations for each of them and sometimes gives a typical example of how these
functions should be used.

p6LowLevel.h/c Here are defined the LowLevel functions like the functions for imple-
menting the synchronization mechanisms on Threads (Mutexes, Semaphores, Barrier) and
the randomization functions used to initialize the permutation tables. In this file was added
a Linux implementation of the synchronization mechanisms using posix semaphores.

4.2.2 The Implementation with Posix Semaphores

The main purpose of the implementation with Posix Semaphores is to obtain a reliable and
portable application conforming to the Posix (Portable Operating System Interface) Stan-
dards that can easily run on the Distributed Shared Memory (DSM) systems.

In the file p6LowLevel.h/c, the initial implementation on Linux used only the SystemV
semaphores (the compilation flag in order to use this implementation is P6 SYSTEMV SEM).
We added to this implementation another implementation using posix semaphores (the com-
pilation flag in order to use this implementation is P6 POSIX SEM).

The SystemV semaphores that have now an analogous posix implementation are used as
it follows. A table with NbPE (number of processors) semaphores is used for each begining of
mission. These semaphores are initialized with zero and are used as mutexes. Four semaphores
and a shared variable (a barrier index - int value) are used to implement the SystemV barrier
in ParCeL-6.1. The complexity of this barrier is O(2*P), where P is the number of threads.

The functions that were implemented using the posix semaphores, are:

• p6LowMissionSemaphoreTabInit(int NbPE): the mutex table with NbPE semaphores is
initialized

• p6LowBarrierInit(int NbPE): initializes the barrier semaphores to zero and the shared
variable to zero

• p6LowMissionSemaphoreTabFree(int NbPE) is used to free the table with semaphores
that are used for missions

• p6LowBarrierFree(void) is used to destroy the semaphores used in the implementation
of the barrier

• p6LowSignalMission(int NbPE): release each mission semaphore of the mission
semaphore table

35

• p6LowWaitMission(p6ProcInfo t *PtProcInfo): for a processor/thread to wait at its
corresponding semaphore (one from NbPE semaphores) in the mission semaphore table

• p6LowBarrier(p6ProcInfo t *PtProcInfo): must be called by a processor to wait at the
reentrant barrier. When all the processes will arrive to the barrier, the master processor
(the processor with the id zero) will command their release.

In the implementation using posix semaphores (compilation flag P6 POSIX SEM), the
functions have the same meaning, but they are conforming to the posix standard: the Mission
Mutex Table was replaced with a table with posix semaphores (NbPE sem t semaphores)
and the four semaphores used to implement the barrier were also replaced (with four sem t
semaphores).

The code became more concentrated and easy to follow and the main goal of taking
advantage of portability (conforming to Posix Standards) was achieved. A simple ParCeL-6.1
application was run on the DSM using succesfully all the Posix implemented synchronization
mechanisms.

36

Chapter 5

Kerrighed

A practical solution to obtain SpeedUp when running a parallel application on a cluster, and
in the same time a solution that maintains transparency to the programmer, is to install and
to use a software DSM system on the cluster. There exists a much faster DSM solution, but
very expensive - this solution would be to use a hardware DSM, but due to its costs, some
limitations would be encoutered from the point of view of accessibility and upgrading - often
a hardware upgrade can be much cheaper when the old components are totally forgot and
replaced.

This chapter is exclusively dedicated to the software DSM we have installed, tested and
used with ParCeL6. The introduction has the role to emphasize some main features of this
software system. In the second phase, the results that we have obtained with some general
tests will be presented to the reader. It is important for the reader knowledge, to specify
that all the time values that are mentioned and that appear in the diagrams are in fact the
average values of ten measurements [62, 63].

5.1 Description of Kerrighed

Kerrighed is a software DSM that offers the view of a unique SMP machine on top of a cluster
of standard PCs. It is implemented as an extension to Linux operating system (a set of Linux
modules and a small patch to the kernel). The main features of Kerrighed are[62]:

• Customizable Cluster Wide Process Scheduler: Processes and threads are automati-
cally scheduled over the cluster nodes to balance the CPU load using the Kerrighed
default scheduling algorithm. The global scheduler has to be properly configurated and
all its modules must be loaded in the kernel (the names of scheduler’s modules are
cpu scheduler2, migration analyzer, mosix filter).

• Cluster Wide Shared Memory: Threads and System V memory segments can operate
through the whole cluster, just like on a SMP machine. All the threads of a process
have the facility to migrate on any node of the cluster without any intervention from
the programmer.

• High Performance Stream Migration Mechanism: Processes using streams (e.g. socket,
pipe, fifo, char device) can be migrated with no penalty on communication performance
after migration. There is a module in Kerrighed that maintains the efficiency and
performance of the streams in their distributed environment.

37

• Distributed File System: A unique file name space is seen over the whole cluster. All
cluster disks are merged in an unique virtual disk. A file descriptor will be unique all
over the whole cluster.

• Process Checkpointing: Processes can be checkpointed and restarted on any cluster node
due to the flexibility of this distributed system.

• Full Posix Thread Interface: The full Posix Thread interface can operate with
threads spread over cluster nodes. In Kerrighed is defined a native posix barrier
(pthread barrier t) for distributed environments.

• Cluster Wide Unix Process Interface: All traditional UNIX process management com-
mands (e.g. top, ps, kill) operate cluster wide. Another feature is that the process
identifiers (pid) are unique cluster wide, so, when running top for example, we can see
the amount of resources used by a process on each machine of the cluster.

• Customizable Single System Image Features: Single system image features (e.g. shared
memory, global scheduler, migrable streams) can be enabled or disabled on a per process
basis. Kerrighed has in fact a large number of primitives that can be applied in order
to manage and to configurate the processes that can migrate cluster wide.

There are some features that Kerrighed doesn’t offer and it is important for the users to have
knowledge of them:

• An Automatic Parallelizer: Kerrighed does not parallelize automatically the applica-
tions. This means that a big sequential process will not run faster on Kerrighed. To run
faster, an application has to be parallelized. The parallelization of an application must
be a compromise between the granularity and the performances of the systems that will
run it, or, in other words, a compromise between granularity and the level of interpro-
cess (or interthread) communication. The main idea would be that if the application
runs faster on a multiprocessor rather than on a uniprocessor machine, it is maybe able
to run faster on Kerrighed than on a uniprocessor machine. If the application does not
run faster on a multiprocessor, it will certainly not run faster on Kerrighed.

• A Middleware: Kerrighed is an operating system, not a middleware. It runs inside
Linux, not on top of Linux. The mission of Kerrighed is to extend Linux functionalities
to manage cluster wide services.

• A Virtual Machine: Kerrighed does not create a virtual cluster, it gives the illusion
that a physical cluster of PCs is a SMP machine, in order to make possible easier
programming.

5.2 The Architecture of Kerrighed

We have worked with Kerrighed version 1.0. In the following section, there are presented
to the reader the general architecture of the Kerrighed system and a brief description of the
functionalities offered through its different modules (for details see [62]).
Kerrighed architecture can be observed in Figure 5.1 and it is composed from a number of
specialized modules.

38

Figure 5.1: The general Architecture of Kerrighed System Version 1.0

The module Iluvatar is the first module loaded when starting the system. It offers basic
functionalities that are used by the other modules. It has the role to manage the data
structures of the processes that run on Kerrighed.

The modules Gimli and Gloin are in charge with the communication between nodes: Gloin
takes care of the network access, while Gimli offers the communication interface. It is known
that Linux offers two types of mechanisms for communication: the sockets and the RPC. The
disadvantage of these mechanisms is that they offer low performances and a not very simple
interface for the distributed programming. This is the reason that lead to the implementation
in Kerrighed of the modules Gimli and Gloin that provide a communication library with high
performances in a distributed environment.

Nazgul offers the main tools for replication, usage of checkpoints and migration of pro-
cesses. This module also offers the mechanism for remote function invocation. The data
are imported and exported using a mechanism named ghost. This mechanism provides an
interface for storing the data - on the disk, in the memory, or for sending the data in the
network. It is used to register and to activate some of the services used by the other modules.
Its functionalities can’t be directly accesed from the user space.

39

Legolas makes possible the access to the services of Kerrighed. A service is a mixture of
a folder with distributed data and function calls on the entries of this folder.

Palantir manages the flux in Kerrighed. The extension modules Palantir/Inet, Palan-
tir/Pipe and Palantir/Unix provide the interfaces for the access from the modules above
Palantir.

Elrond provides the synchronization primitives: locks, barriers, semaphores, condition
variables and atomic functions. These synchronization functions can be directly used, or they
can be used through the pthread interface offered by the library krgthread. The interpro-
cesses synchronization is provided by using a structure for each process with pointers to the
synchronization objects.

The module baptized Gandalf provides the sharing of data, and maintains its coherence by
using a container mechanism. Each shared object (file, memory segment, IPC) has associated
a container. In order to mantain easy access to the containers for the high-level services,
Gandalf provides a data coherent interface.

Kermm provides the global access to the memory by using the container mechanism
provided by module Gandalf to keep available the sharing of data (threads, systemV memory
segments) and to mantain the coherence. All the management of the physical memory is done
by using only two Linux functions: get free page and free page.

Kerfs offers a system for the parallel and distributed management of distributed files. It
uses the containers in order to provide sharing and coherence of the cached data and also for
some internal data structures (e.g. i-nodes, file structure).

Aragorn is responsible with the replication mechanisms, the checkpoint management and
with the migration of the processes. The migration of a process consists in two main steps: the
migration of the execution context of the process and the maintaining of the relation between
the migrated process and the resources that it used on the initial execution node. The module
Aragorn makes possible the first phase of the migration using the ghost mechanisms offered
by Nazgul, while the second phase is automatically provided by the other modules.

The library Krgthread provides an almost complete Posix interface to the kernel mecha-
nisms offered by Kerrighed. The thread synchronization functions (e.g. pthread mutex lock,
pthread cond wait) use the mechanisms provided by the module Elrond. The function
pthread create uses the mechanism of remote process creation offered by the module Aragorn.
The memory sharing, default for the threads, is provided by the module Gandalf.

The library libKerrighed offers some Kerrighed primitives (e.g. migrate self(),
aragorn create gthread()), implemented in the modules Iluvatar, Gimli and Aragorn.

5.3 Kerrighed Installation

5.3.1 Available Hardware

We have installed and run Kerrighed 1.0.0 on a cluster at Supélec containing four machines
P4 Xeon 2.4GHz with 1GB main memory connected through Gigabit Ethernet.

Detils about the motherboard:

• FSB 533MHz

• chipset Intel E7501

• 2 onboard channels Ultra320 SCSI

40

• harddisk ST336607LC 36,7 Go Ultra320, max. 3 disks

• onboard 10/100/1000Base-T Gigabit Ethernet dual port

The machines were connected using a HP 2724 Procurve (J4897A) switch. Other details
about this switch:

• 24 RJ-45 10/100/1000 ports (IEEE 802.3 Type 10Base-T, IEEE 802.3u Type 100Base-
T, IEEE 802.3ab 1000Base-T Gigabit Ethernet)

• Dimensions: 44.2 x 23.62 x 4.32 cm

• Switching capacity: 48 Gbps

• Address table size: 32000 entries

5.3.2 Building the Kernel

The Linux distribution that we used was RedHat9. At the moment we have installed Ker-
righed, we were more or less obliged to use this distribution because the latest version of this
software DSM available at that time (v1.0.0) supported only the Linux 2.4.24 kernel that
was not compatible with FedoraCore3 (the other distribution that was also installed on some
machines).

In order to succesfully run and install Kerrighed 1.0.0 there are some steps that must be
followed [63].

Firstly, the Kerrighed package and the Linux 2.4.24 source code must be downloaded from:

• Kerrighed package: www.kerrighed.org/download.html

• Linux 2.4.24 source: www.kernel.org/pub/linux/kernel/v2.4/linux-2.4.24.tar.bz2

Secondly, we had to apply the Kerrighed patch on the kernel.
We have installed Kerrighed in the shared directory /usr/local/kerrighed.
To uncompress the Kerrighed packages, we have executed the following:

$cd /usr/local/kerrighed
$tar zxvf kerrighed-1.0.0.tar.gz
$ln -s kerrighed-1.0.0 Kerrighed
$export KERRIGHED_PATH=’pwd’/Kerrighed

Then we uncompressed the kernel source:

$cd /usr/local/kerrighed
$tar jxvf linux-2.4.24.tar.bz2
$mv linux-2.4.24 linux-2.4.24-krg
$export LINUX_PATH=’pwd’/linux-2.4.24-krg

To apply the patch on the kernel the following must be executed:

$cd $KERRIGHED_PATH/config/kernel/2.4.24
$make

41

Configuring the kernel is the next step of the installation:

$cd $LINUX_PATH
$make menuconfig

The Kerrighed version that was available at that time was not completly SMP-safe, so the
kernel must be configured to be non SMP, but to be able to normally boot each node in the
cluster and to have network communication. The version 1.0.0 of Kerrighed didn’t support
high memory option so this feature should be deactivated when configuring the new kernel.
The high memory support feature is supported in Kerrighed version 1.0.1 and 1.0.2, versions
that appeared good time after our first installation. There are other important features that
can be useful when troubleshooting Kerrighed in order to ”catch” the bugs:

• the Kernel Debugger must be compiled and activated in the kernel

• the section ”Kernel Hacking” in the kernel configuration menu should look like this:

[*] Compile the kernel with frame pointers
[*] Built-in Kernel Debugger support
< > KDB modules
[] KDB off by default
(0) KDB continues after catastrophic errors

To build the kernel the following command should be used:

$make dep clean bzImage

For a Lilo boot loader, in order to install the kernel, the following steps must be followed
(as root):

#cd /usr/local/kerrighed/linux
#cp arch/i386/boot/bzImage /boot/vmlinuz-2.4.24-krg
#cp System.map /boot/System.map-2.4.24-krg
#cp .config /boot/config-2.4.24-krg

The next lines should be added to /etc/lilo.conf:

image=/boot/vmlinuz-2.4.24-krg
label=2.4.24-krg
read-only

The configuration is applied to lilo by issuing:

#lilo

In order to choose the next kernel to boot without changing the default configuration, the
following command can be used:

#lilo -R 2.4.29-krg
#reboot

42

In order to install a kernel that was built on one node on the other three nodes of the cluster,
we have used the following script that takes as argument the name of the target machine:

#
#
if [-z "$1"]; then

exit -1
fi
rdist -c /boot $1
rdist -c /lib/modules/2.4.24-krg-root $1
rdist -c /usr/local/kerrighed $1
rdist -c /etc/profile.d $1
rdist -c /etc/sudoers $1
ssh $1 lilo

5.3.3 Starting Kerrighed Cluster

In order to install Kerrighed the following commands must be executed:

• in the Kerrighed directory:

$ cd $KERRIGHED_PATH
$ make
$ make install

• if someone wants to use the additional tools that came with Kerrighed, the GTK and
GDK environments must be installed, and the following should be executed:

$ make tools
$ make install

To start Kerrighed cluster, the following configuration files should be created:

• /etc/kerrighed/kerrighed nodes; Our file (for a cluster with four nodes) looks like this:

monox1 eth0
monox2 eth0
monox3 eth0
monox4 eth0

• /etc/kerrighed/kerrighed session; This file is used to store an unique number in order
to identify distinct Kerrighed clusters that can be found in the same network. In our
file we have used the value 1.

• In the /root directory - in our case the root will be the user that runs Kerrighed, the
files .kerrighed nodes and .kerrighed session have the same content as the files above.

43

• The user that starts Kerrighed must be able to run insmod/rmmod commands using
the command sudo. In order to do this, our file /etc/sudoers looks like this on all the
four nodes of the cluster:

Host_Alias CLUSTER=monox1,monox2,monox3,monox4
Cmnd_Alias MODULE=/sbin/insmod,/sbin/rmmod
root ALL=(ALL) ALL
ifrim_mir CLUSTER=NOPASSWD: MODULE
vialle CLUSTER=NOPASSWD: MODULE
demo CLUSTER=(ALL) ALL

• In order to be able to use the KerFS filesystem, the following directories had to be
created on all the Kerrighed nodes:

mkdir /.KERFS_ROOT
mkdir /mnt/kerfs
ln -s /mnt/kerfs/chkpt /var/chkpt

• In the file /etc/fstab on all the Kerrighed nodes, we have added the line:

none /mnt/kerfs kerfs noauto,defaults,user 0 0

Now Kerrighed must be started by running

krgreboot

on only one node in the cluster. This loads the Kerrighed environment on every node in the
cluster. In order to use the distributed KerFS filesystem, on only one node in the cluster, the
following should be executed:

mount /mnt/kerfs
chmod 777 /mnt/kerfs

At the time we have installed Kerrighed, there was not available any mechanism to stop
successfully the Kerrighed services, and consequently it was not available a mechanism to
restart successfully the machines of the Kerrighed cluster.

5.4 Limitations in Kerrighed v1.0.0

There are some limitations and problems that a user of this Kerrighed version may encounter
and it is important to have knowledge of them:

• A process cannot create more than 32 synchronization objects (e.g. lock, barrier)

• No SMP support

• No 64bits support

• No consistent cluster wide time management

44

• Kerrighed modules cannot be properly unloaded

• Do not manage cluster bigger than 32 nodes

• mremap is not supported within migrated or deployed threads

• Cluster wide System V semaphores are not supported

• Hot node addition or removal is not supported

• Cannot list more than 128 files in /proc/<pid>/fd

• Some process crash can occur on some corner cases when using OpenMP

• Small memory leaks

• pthread cond may block (very unlikely)

• A migrated socket does not send SIGIO to peer socket. A alternative to select is to
let the kernel inform the application about events via a SIGIO signal. For that the
FASYNC flag must be set on a socket file descriptor via fcntl and a valid signal handler
for SIGIO must be installed via sigaction.

• One node crash is likely to crash or dead-lock the all cluster.

Another important observation is that in our case the applications that we run on Kerrighed
had to be launched from the directory /usr/local/kerrighed/tests, either the binary is there
or not, but the prompt must be /usr/local/kerrighed/tests (in our case Kerrighed installation
directory is /usr/local/kerrighed). If we didn’t executed the applications in this way, one of
the nodes in the cluster would have gone in kernel panic.

5.5 Benchmarks And Strategies on Kerrighed

We first established some strategies and thought to some implementation of algorithms in
order to test the performances of the DSM on our cluster. In the beginning we wanted to see
what Kerrighed can do and what it can’t do from the point of view of performances. In order
to do this, we have decided to find the answer for some key critical situations:

• optimal and worst cases from the point of view of the frequency of the memory page
misses - independent computations in threads or the opposite

• what is the most efficient mechanism of thread synchronization on cluster: the barrier
implemented in ParCeL-6.1 exhibits better performances when running the application
on the DSM than the native Kerrighed barrier?; the native barrier synchronization
mechanisms of Kerrighed are really efficient on the distributed environment of the clus-
ter?

The next step had the role to determine the performances and the limitations of the cur-
rent version of ParCeL for shared memory systems - ParCeL-6.1, when running a program
implemented with the help of its easy to use semantics.

The final step would be to obtain the conclusions and to think about the perspectives.
This will be done by taking into consideration all our results on the cluster:

45

• the results and performances of the DSM Kerrighed (Page Misses Impact and Synchro-
nization Barrier)

• the results and performances of ParCeL-6.1 when running on Kerrighed

• if necessary, the results and performances exhibited when running other ParCeL versions
on clusters and SMPs

The next topics will present the results achieved with ParCeL on the cluster.

The first tests we ran on Kerrighed had the role to show its performances in the case of some
classical situations when speaking of a software DSM - Page Miss Impact and Synchronization
Barrier.

At the beginning, we had to take a decision on the number of threads that lead to the
most significant results in the case of our cluster (four machines P4 2.4GHz with 1GB main
memory connected through Gigabit Ethernet). We did this by running a classical pthread
Jacobi Relaxation. The diagram in Figure 5.2 shows that the significant results in our case are
obtained for one thread per node in the cluster (and implicitly for one thread per processor) - in
other words: when we have multithreading and we are sure that we don’t have hyperthreading.
Maybe sometimes will be intersting to find out what is happening when running two threads
per node in the cluster to see if any hyperthreading influence.

Figure 5.2: First Jacobi Relaxation that Ran On Kerrighed

Between 4 and 8 number of threads used in the application, we can see that the simple
fact that there is no load balancing - we don’t have the same number of threads on each node
of the cluster, may introduce some delay due to the scheduling algorithms that are applied.

46

Assigning an inequal number of threads to the nodes in the cluster may be combined with
some delays in page miss handaling and this could be the reason for the fact that we don’t
have any fall in the exacution times between 4 and 8 threads.

The next test had the role to determine the behaviour of Kerrighed in the case of an
optimal parallelism - an embarrassingly parallel application. In the application there were no
memory allocations (Figure 5.3), and each thread made processing on some local variables
without any interaction with the other threads. The behaviour of Kerrighed in this case
showed that a high SpeedUp value can be achieved when increasing the number of threads.
The execution time is deacreasing as much as the number of threads increases.

Figure 5.3: An Application with Independent Pthread Computations that Ran On Kerrighed

In the Figure 5.4 there are presented the results that we have obtained when running an
application that resembles Jacobi Relaxation, excepting threads execute independent compu-
tations and we have no page memory misses. The results were very encouraging, showing that
in the case of analogus (very parallel) applications, SpeedUp can be efficiently obtained on
Kerrighed. A hyperSpeedUp is obtained in this case: the ideal value of the SpeedUp equals
at most the number of running threads, but in the case of 2 threads, for example, it is almost
3.

The next tests were made to evaluate the performances in handaling a large number of
memory access requests - a very high frequency of memory page misses (Figure 5.5). The
application was a kind of Jacobi Relaxation in which each pthread read the memory pages
managed by the others and had the role to demonstrate the efficiency or the inefficiency of
Kerrighed to handle the page faults. No SpeedUp was achieved in this case.

In the Figure 5.5, the results show that the passing from local memory to global memory
of the cluster (from local buses to Gigabit Ethernet) (from 1 thread to 2 threads) increases
the execution time for about 5 times. Moreover, if continuing with increasing the number of
threads, the execution time doesn’t decrease under the execution time obtained for 2 threads.
We hoped that running ParCeL-6.1 on Kerrighed won’t generate such a high frequency of

47

Figure 5.4: Pthread Application on Kerrighed with No Pege Misses

Figure 5.5: Pthread Application on Kerrighed with a lot of Page Misses

page memory misses.
Another important aspect in benchmarking Kerrighed was to see the importance of the

false sharing effect - if there is any influence given by the fact that the memory used in
the program is page aligned or not (Figure 5.6 and Figure 5.7). The importance of the false
sharing and its effect in increasing the execution times is more obvious for a number of threads
equal or less then 75% from the number of nodes in the cluster. It seems that using the page
aligned memory really increases the performances by avoiding false sharing, but with the

48

disadvantage of some memory waste.

Figure 5.6: Pthread Application on Kerrighed using Memory that is Not Page Aligned

Using the page aligned memory will eliminate the false sharing effect.

True sharing between threads happens when two threads access the same data in a con-
current manner. Even if access to this data is protected by mutexes for correctness of the
program, this sharing should be avoided where possible.

False sharing between two threads happens when two threads access different data situated
in the same memory page. When speaking about performances, this is the same problem as
true sharing. Avoiding false sharing is much difficult than true sharing, because examination
of the logical structure of the code is not sufficient to detect when it will occur. If possible,
variables used by different threads should not be located in the same memory page. The
memory padding (creating unused memory zones so that data-structures are page aligned) is
often a good solution.

We have calculated the SpeedUp for a program that does a Relaxation in the most sig-
nificant situations for the page memory misses impact (no page memory misses, page aligned
memory, memory not page aligned - in the last two cases, the application becomes a classical
Jacobi) and we have centralized the results in the Figure 5.8. The best SpeedUp values are
obtained in the case of no page misses and in the case of using page aligned memory as we
expected. The results were very encouraging and they showed that a parallel application with
a low frequency of page memory misses can be transparently and efficiently parallelized on a
cluster with Kerrighed. As the reader can see in the 5.8, in the case of no page memory misses,
when running the application with 4 pthreads, a high value of SpeedUp can be observed in
the diagram - the value of the SpeedUp is greater than the ideal SpeedUp value that is 4, so
we have obtained HyperSpeedUp.

49

Figure 5.7: Pthread Application on Kerrighed using Page Aligned Memory

Figure 5.8: The SpeedUp for a Relaxation Application Running on Kerrighed

5.6 MPI Compatibility

The current sub-models of ParCeL-6 (ParCeL-6.1 and ParCeL-6.2) are optimized and imple-
mented for architectures supporting memory sharing paradigm and respectively for architec-
tures supporting only message passing paradigm. Kerrighed may offer the posibility to take

50

benefit of both paradigms on the same parallel or distributed architecture. This is the reason
that we were interested to see if Kerrighed is completely MPI compatible.

Figure 5.9: Large utilization of MPI

Because MPI uses (by default) sockets in order to allow the communication between pro-
cesses on different machines, Kerrighed installed system must be instructed with the available
Kerrighed capabilities to link the created sockets to Kernet streams and to use a special rsh
program for process deployment - krg-rsh. The MPI library and the runtime will be used
unchanged. With the configurations mentioned above, Kerrighed scheduler will menage the
deployment of the MPI program.

In order to install MPICH to be menaged by the Kerrighed Scheduler, the usr sould follow
the steps:

• download and unpack MPICH. We have donloaded MPICH-1.2.6 tar archive and we
have unpacked it in /usr/local/src/

• set the RSHCOMMAND to

KERRIGHED_PATH/bin/krg-rsh

• install MPICH. There are no other Kerrighed requirements.

• We have first tried to run an MPI application with the hints given with Kerrighed:
we created a machine file (machine.file for example), containing one line:localhost;
this solution was not satisfactory in our case because the processes were executed on

51

only one node of the cluster. When we launched the application with a simple com-
mand like mpirun -np 4 mpi test, the processes were deployed on all the four nodes of
the cluster. In all the cases, the executable file mpi test was placed in the directory
/usr/local/kerrighed/tests/ on all the four machines of the clusters.

• in the terminal in which are launched the MPI applications, in order that Kernet streams
to be used, the following command must be executed:

krg_capset -d +USE_INTRA_CLUSTER_KERSTREAMS

• the application should be launched with a command like:

mpirun -np 4 -machinefile ~/machine.file mpi_program

We have noticed that the processes were equally deployed on all the nodes of the cluster
when launching the MPI applications (we have used this way often) with a command
like:

mpirun -np 4 mpi_program

The Kerrighed engineers say that there may be some critical cases when running MPI on the
cluster that must be considered:

• MPI processes are deployed and managed by the current scheduler: they therefore
theoretically can be migrated to balance the load on all nodes, and be deployed in an
unexpected way if other programs are running on the cluster.

• Simple schedulers may not be very robust to process deployment using hierarchical
methods.

The first test that we made with MPI on Kerrighed had the role to see if Kerrighed and
MPI can run independently and if Kerrighed introduces some great overhead in the MPI
communication. The application did only a lot of broadcasts and message sending between
processes. MPICH was installed and configured to use the Linux provided rsh program
and no krg capset command was executed in the terminal in which the MPI applications
were launched. In other words, the first MPI test was ran by totally ignoring the fact that
Kerrighed is installed on all the four nodes of the cluster.

In order to run the application, we have fallowed the steps:

• normal installation of MPICH on all the four nodes of the clusters. The fact that
Kerrighed was installed on the cluster was ignored.

• the fallowing machine.file was created on the machine monox1 in
/usr/local/kerrighed/tests:

monox1.grid.metz.supelec.fr
monox2.grid.metz.supelec.fr
monox3.grid.metz.supelec.fr
monox4.grid.metz.supelec.fr

52

• the executable file - mpi test, was placed on all the four machines of the cluster in
/usr/local/kerriged/tests/.

• the application was launched on monox1 with commands like:

mpirun -np 4 -machinefile machine.file mpi_test

The application was ran several times in two cases:

• when Kerrighed was not running on the cluster

• when Kerrighed was running on the cluster

The results for running an intensive MPI communication test can be observed in Figure
5.10. In the diagram, we can observe that the delay introduced by the fact that Kerrighed

Figure 5.10: The first MPI test on the cluster where Kerrighed was installed

is running is parctically insignificant for the cases when the application is ran with 2 or 3
processes. When the application is ran with 4 processes, this delay has the value of about 2
seconds. We recommand the studying of this difference between the execution times when
the increasing of the Kerrighed cluster will be needed.

5.7 IPC Compatibility

One of the advantages provided by Kerrighed is that System V memory segments - and
consequently IPCs like shared memory, can operate through the whole cluster, just like on
a SMP machine. We wanted to test the usage of the IPC shared memory in order to take
knowledge of all the details that are needed for proper use on the cluster. Another test

53

was done in order to see if we can take benefit of the combination of MPI and IPC on the
Kerrighed cluster.

In the first test - a short MPI application that was a data integrity test for the IPC shared
memory of Kerrighed, the next steps were followed:

• the executable file mpi test was copied on all the four machines of the cluster in
/usr/local/kerrighed/tests. The application was launched as it fallows and the processes
were automaticaly deployed on all the nodes of the cluster:

krg_capset -d +USE_INTRA_CLUSTER_KERSTREAMS
mpirun -np 4 mpi_test

• the process with the process identifier 0 (named in the fallowing root process) created
the shared memory with the instruction

shmid=shmget (IPC_PRIVATE, GLOBAL_SIZE, IPC_EXCL|IPC_CREAT| 0777)

• the id obtained by the root process was then broadcasted to all MPI processes. This
processes attached to the shared memory that they received from the root process. Each
process used exclusively an equal part of the shared memory. They attached themselves
to the shared memory with the instruction:

shmat(shmid, 0, 0)

• the process with the id 0 send with MPI Scatter some data to the other processes.

• the MPI processes copied the data received from the root process into their correspond-
ing portion of the shared memory. The root process attached himself to the shared
memory.

• all the processes executed MPI Barrier.

• the root process tested if the data that was send to the MPI processes with MPI Scatter
was identical with the data that was now in the shared memory and it was, so the data
integrity test for the IPC shared memory of Kerrighed was succesfully passed.

• The shared memory was destroyed by the root process with the instruction:

shmctl(shmid, IPC_RMID, &result);//result is (struct shmid_ds)

The second test had the role to see if we can take advantage of both MPI and IPC shared
memory in the same time. In other words, we wanted to see if the IPC shared memory can
be directly used by the MPI processes as receiving buffers.

The application was ran as it was previously mentioned, except the fact that in
MPI Scatter all the processes used as receiving buffer their corresponding part of the shared
memory buffer. The root process verified then that the data in the shared memory is identi-
cal to the data that it send to the MPI processes. The data was identical and the test was
successfully passed.

54

Conclusion Now we can easily emphasize one important advantage of using Kerrighed on
a cluster: we can take benefit in the same time of both message passing paradigm and shared
memory paradigm, and consequently we can have a transparent cluster wide access on an
IPC shared memory.

55

56

Chapter 6

Running ParCeL-6.1 on Kerrighed
DSM system

We have installed and run Kerrighed 1.0.0 on a cluster containing four machines P4 2.4GHz
with 1GB main memory connected through Gigabit Ethernet. In order to take benefit of
the advantages provided by this DSM (in this particular case - migration of threads on all
the nodes of the cluster), we had to compile our ParCeL-6.1 applications using the library
krgthread instead of pthread. When using this library, the function pthread create uses the
mechanism of remote process creation offered by the module Aragorn. In this way, all the
pthreads in the application will be deployed by Kerrighed on all the nodes of the cluster
providing load balancing and process/thread migration.

6.1 Barrier Comparison: Native Kerrighed barrier and
ParCeL-6.1 Handmade barrier

The first main interest was to determine which barrier has better performances when used
in an application that runs on Kerrighed. We have created a small program that just made 1
million barrier calls for a certain number of pthreads given as argument. This application had
the posibility to run either with the barrier implemented with posix semaphores in ParCeL-
6.1, either with the barrier implemented in Kerrighed (pthread barrier t) - the option was
chosen by the value of a compilation flag.

In ParCeL-6.1 we have implemented a barrier that uses four posix semaphores and a
shared variable (an integer); therefore the barrier is portable and confoming to the Posix
standard. This barrier is in fact a barrier for the Linux kernel version 2.4 that we have used
- this kernel did not provide any barrier. The access times for this barrier are linear and
their complexity is O(2*P). The efficiency of this barrier was proved by the tests that we
have made on a four processor SMP. The processors of this SMP were Pentium3 at 700MHz
and the main memory had 1GB. The results for 1 million calls on this efficient and portable
barrier for a certain number of threads can be seen in the Figure 6.1.

The benchmarks on Kerrighed had the role to establish if the native synchronization
barrier provided by this DSM has better performances (and if so, how much better?) in the
distributed environment, then the efficient SMP barrier implemented in ParCeL-6.1. The
results of running the ParCeL-6 posix semaphores barrier and the Kerrighed barrier can be

57

Figure 6.1: The Behaviour of the ParCeL-6.1 Barrier Implemented with Posix Semaphores
on a 4*P3-SMP

observed in the Figure 6.2 for the barrier implemented in ParCeL-6.1 and in the Figure 6.3
for the barrier implemented in Kerrighed.

Figure 6.2: The Behaviour of the ParCeL-6.1 Barrier Implemented with Posix Semaphores
on Kerrighed - 4*P4 cluster

As it was more or less expected, the barrier implemented in Kerrighed for applications
that run on Kerrighed was faster, and in fact a lot faster, than the barrier implemented with
Posix semaphores (that was efficient on a SMP). The execution times for the two barriers are
compared in Figure 6.4. A very important observation could be emphasized here: the native
Kerrighed barrier showed an almost constant execution time when increasing the number
of threads, and this happens for sure in the case of multithreading and maybe this happens
also in the case of hyperthreading (running enough threads on a single node of the cluster in
order to activate hyperthreading). Some benchmarks could be done to study the behaviour
in hyperthreading in order to see if we can have both multithreading and hyperthreading on

58

Figure 6.3: The Behaviour of the Barrier pthread barrier t Implemented in Kerrighed - 4*P4
cluster

the Kerrighed cluster, but this is not one of our interests in this phase.

Figure 6.4: Comparison between the Behaviour of the Barrier Implemented with Posix
Semaphores in ParCeL-6.1 and the Barrier pthread barrier t Implemented in Kerrighed

We can formulate the conclusion for our synchronization case study.

• The portable barrier implemented by us when running on the 2.4 Linux kernel exhibited
good performances when running on a four multiprocessor machine, even if the proces-
sors were much older and less fast than the processors that were on the four machines
in the cluster.

• The Kerrighed barrier showed very good performances and achieved constant execution
times, even if the number of threads increased.

• The cost for running the native Kerrighed barrier in the case of our cluster (4*P4-
DSM) is about five times higher than running the efficient posix barrier implemented
in ParCeL-6.1 on a multiprocessor machine (4*P3-SMP).

59

Figure 6.5: Execution Times of the Barrier Implemented with Posix Semaphores in ParCeL-
6.1 and the Barrier pthread barrier t Implemented in Kerrighed on 4*P4-DSM and 4*P3-SMP

6.2 Benchmarking ParCeL-6.1 on Kerrighed DSM

The next tests had the role to see the behaviour of a ParCeL-6.1 application on the DSM
Kerrighed, knowing its behaviour when ran on a single machine of the cluster. We used for
these tests, when performed on the DSM, the barrier implemented in Kerrighed because it
showed better performances than the barrier implemented in ParCeL-6.1 as mentioned in the
previous section. For the tests performed on a single machine of the cluster, we have used
the ParCeL-6.1 barrier (because Kerrighed v1.0.0 couldn’t run on a single machine and we
couldn’t use the pthread barrier t in this case).

As the results in the Figure 6.6 show, the execution times when using a single machine
are not very good for a small number of threads, but they are satisfactory when increasing
the number of threads used in the application and hyperthreading is activated.
When running the same application on Kerrighed V1.0.0 (on the the four machines of the

Figure 6.6: Jacobi Relaxation Implemented with ParCeL-6.1 on One Machine of the Cluster
(15000 iterations)

60

cluster), the results were not good at all, showing that ParCeL-6.1 on Kerrighed is not a good
solution to obtain SpeedUp, as we can see in Figure 6.7. We could easily observe that the
execution times were much greater than in the case of using a single machine of the cluster
for the same application. The conclusion is that the memory model used in ParCeL-6.1 is
more complex than we expected from the point of view of a DSM and we should take into
consideration for the future to adapt ParCeL-6 to run efficiently on a DSM.

Figure 6.7: Jacobi Relaxation Implemented with ParCeL-6.1 on The Cluster 4*P4 DSM
Kerrighed V1.0.0 (15000 iterations)

We did the same tests on Kerrighed V1.0.2 installed on the kernel 2.4.29. In this case,
the application ran about 40% faster, but we didn’t obtain SpeedUp either and the execution
times maintained at a very high level in comparison with the execution times of the same
application on Kerrighed V1.0.0. The results are ilustrated in Figure 6.8.

61

Figure 6.8: Jacobi Relaxation Implemented with ParCeL-6.1 on The Cluster 4*P4 DSM
Kerrighed V1.0.2 (15000 iterations)

62

Chapter 7

ParCeL-6 Project from DSM’s
point of view

7.1 Considerations on future development

A typical ParCeL-6/Grumpf application has both sequential and slow interactivity parts and
intensive computations parts. ParCeL-6 with message passing can run on the DSM handaling
massive parallel calculus parts as can be observed in the Figure 7.1, while the slower and
sequential parts can run directly on the DSM without introducing any delay in the execution
and taking benefit of the advantages provided by this DSM such as cluster wide memory
space and consequently, cluster wide interactivity.

Figure 7.1: Running a typical ParCeL-6/Grumpf Application on the DSM Kerrighed

A generic application was written. The main objectives of this application were:

• taking benefit of the cluster wide memory space in the way needed by ParCeL-6, by
using the shared memory IPC provided by Kerrighed

63

• taking benefit of the high scalability provided by the usage of MPI

• finding new openings for future development of ParCeL-6

A typical ParCeL-6 application consists in sequential and parallel parts. In the sequential
parts, the process with the id zero (master process) needs to easy access the global variables
used in a ParCeL-6 program. These are the slower parts which can be executed without a
meaningful delay over the cluster wide memory space provided by the DSM. The parallel
parts will be executed by accessing only the local memory of each process and will mantain
the high prallelism performances over the cluster provided by the MPI implementation.

A short description of the application is provided in the following:

• each process has a linked list of shared memory IPCs

• an entry in the list contains a pointer to the next entry, an id of a shared memory IPC
and a void pointer to a memory space of constant size where a table used in ParCeL-6
can be stored. This pointer indicates the address in the space of the process where the
shared memory with the memorised id is attached.

• each process can allocate as many shared memories it needs in order to store the tables
used in ParCeL-6

• at the end of an intensive computations cycle, the master process needs to access the
global variables used in the program. First, it receives the identifiers of the shared
memories created by each process in the computation cycle and then it can read the
data in these memory spaces by attaching them in its own memory space.

In the figure 7.2, there can be observed the means of handling the shared memory IPCs on a
DSM like Kerrighed.

In the future developments, some problems might appear when it is necessary to ac-
cess the global variables used in ParCeL-6, not in the sequential parts, but in the intensive
computations parts. In this case, it might appear some delays ought to the unexpected com-
munications between the processes. A solution would be to plan in advance the handling of
such communications and to solve them efficiently in the sequential parts. When global access
is needed only in the sequential parts, no delay will be introduced and the master process can
easily read all the data from the other processes.

The Resulting Structure We thought to use in the future, as entry in the list with shared
memories, a structure with the following members:

• table - table with the structures used in ParCeL-6.2

• crt shm id - identifier of the current shared memory

• shm id - identifier of the next shared memory

• adr - address of the shared memory shm id in the current address space of the process

Obs: Each entry of the list will be allocated in a shared memory.

64

Figure 7.2: Running a ParCeL-6 Application taking benefit of the cluster wide shared memory
provided by the DSM

7.2 Example of a DSM Application that uses ShMems IPC

/..
int main (int argc, char *argv[])
{
/..

MPI_Init(&argc,&argv);
MPI_Comm_size(MPI_COMM_WORLD,&no_procs);
MPI_Comm_rank(MPI_COMM_WORLD,&proc_id);

/*each process creates its own shared memories and it memorises in a linked list their ids and a pointer to each of them in its address space*/
for(i=0 ; i < ShMems_PER_PROC ; i++)
{

shmid=createShmId();
addShMemToList (shmid, TRUE);

}

for(i=0 ; i < ShMems_PER_PROC ; i++)
{

buffer = (int*) getTable(i);
buffer[0] = proc_id;
for (j=1 ; j < TABLE_SIZE ; j++)

/*write some data that will be read by the master process, in the shared memories*/
buffer[j] = i;

list_size = getListSize();

65

/*each process will have an array with all the ids of the shared memories*/
if (proc_id == 0)

shmids = returnShmIds(FALSE);
else

shmids = returnShmIds(TRUE);
/*the master process receives the number of shared memories created by each process*/

if (proc_id==0)
if((no_shms_proc=(int *)malloc(no_procs*sizeof(int)))==NULL) error();

else
if((no_shms_proc=(int *)malloc(sizeof(int)))==NULL) error();

MPI_Gather (&shmids[0], 1, MPI_INT, no_shms_proc, 1,MPI_INT, 0, MPI_COMM_WORLD);
/*only in the master process*/

if (proc_id==0)
{

no_all_shmids=0;

for (i=1 ; i<no_procs ; i++)
no_all_shmids+=no_shms_proc[i];

if((all_shmids_aux=(int *)malloc(no_all_shmids * sizeof(int)))==NULL) error();
/*the master process receives the ids of all the shared created by the other processes and it momorises them in its list*/

for (i=1 ; i<no_procs ; i++)
{

if(no_shms_proc[i]>0)
{

MPI_Recv (all_shmids_aux, no_shms_proc[i], MPI_INT, i, 0, MPI_COMM_WORLD, &status);
for (j=0; j<no_shms_proc[i] ; j++)

addShMemToList (all_shmids_aux[j], TRUE);

free(no_shms_proc);
free(all_shmids_aux);

}
else
{

/*the worker process sends the list with its previous created shared memories, to the master process*/
if (list_size > 0)

MPI_Send(shmids+1, list_size, MPI_INT, 0, 0, MPI_COMM_WORLD);
free(no_shms_proc);

}

if(proc_id==0)
{

/*the master process reads the data received in the shared memories from the other processes*/
list_size = getListSize();

for (i=0 ; i < list_size ; i++)
{

66

buffer = (int*) getTable(i);
printf("table=%d;proc_id=%d;page_no=%d;\n", i,buffer[0], buffer[1]);
buffer[0] = proc_id;
buffer[1] = i;

}
/*the master process destroies all the shared memories*/

deleteAllShMemsList();
}

MPI_Finalize();

return 0;
}

67

68

Chapter 8

Conclusions and Perspectives

The DSM experiment done at Supélec helped to the elaboration of new points of view when
speaking about what can be done with parallel and distributed cellular languages on parallel
and distributed architectures.

8.1 Conclusions regarding the DSM experiment

A DSM, in our case the Kerrighed DSM, has some limitations. In case of Embarassingly
Parallel Computations, a good value of the SpeedUp can be achieved - practically, the ideal
SpeedUp value, but in the case of Irregular Memory Accesses and High Frequency of Page
Memory Misses, an obvious performance slowdown is exhibited.

ParCeL-6.1 worked on the DSM without any problems, but with poor performance show-
ing that this submodel of ParCeL-6 is not really appropriate for running DSM applications.
Though the applications implemented in ParCeL-6.1 can run in a transparent manner for the
user on a Linux cluster with the help of the Kerrighed DSM.

8.2 Perspectives for ParCeL-6 Project

The benchmarks with ParCeL-6.2 - the ParCeL-6 submodel for architectures that support
message passing paradigm, showed that very good performance can be achived on clusters.
In the Figure 8.1 can be observed that the usage of the pure MPI version of ParCeL-6.2
can lead to important performances when running applications over clusters. The Figure 8.1
ilustrates the execution times that were obtained for creation of a large number of cells, when
increasing the number of the machines used in the cluster. The machines that were used were
32 Pentium4 machines connected through 2 switches Gigabit Ethernet.

The other direction of research would be to take advantage of the high level of interactivity
offered by a DSM in the future developments of ParCeL-6.

8.3 Previous and Future Steps for ParCeL-6 project

In the Figure 8.2 can be observed the phases followed by the ParCeL-6 project. The first
phase of ParCeL-6 development was to run ParCeL-6.1 on a SMP with the help of posix
threads. This phase was accomplished successfully. Though, the solution provided was not

69

Figure 8.1: The SpeedUp value that can be achieved for Creation of Cells with ParCeL-6.2

scalable. The following phase was to increase the scale for using ParCeL-6.1, and we passed -
with the help of the Kerrighed DSM, to the execution of the applications on a Linux cluster.
The scale was increased, because now we had the possibility to run ParCeL-6.1 on an entire
cluster, but with the limitation of 32 nodes in the cluster. The scaling level was satisfactory,
but the performance was poor and this solution proved to be inefficient.

The performances exhibited by ParCeL-6.2 on parallel machines showed that this can be
a good basis for future development. When running this submodel of ParCeL-6 implemented
only in MPI, it proved to be an efficient solution but liable to become less efficient on large
scale machines that are not grouped and optimized. This disadvantage can be prevented by
using the SSCRAP library developed by the AlGorille team at LORIA together with MPI.
SSCRAP communications appear faster on large scale systems.

The perspectives are to run ParCeL-6.2 implemented with SSCRAP and MPI and in the
same time to take benefit of the advantages provided by the Kerrighed DSM. The cellular
calculus will be efficiently handled on SSCRAP/MPI, meanwhile the user interactivity will
be facilitated at DSM Kerrighed level.

70

Figure 8.2: The steps followed by the ParCeL-6 project

71

72

Bibliography

[1] Theory of Self-Reproducing Automata. Edited and completed by A. W. Burks, Uni-
versity of Illinois Press, Illinois, 1966

[2] CELLSIM II User’s Manual, C.E. Donaghey, U Houston, September 1975

[3] H. Szwerinski, H.-J. Brede, Sicela Simulation Zellularer Automaten, Technische Uni-
versität Braunschweig, 1979

[4] A fast cellular automata simulator with Windows GUI, Bob Fisch, David Griffeath

[5] Friedhelm Seutter, CEPROL: A cellular programming language. Parallel Computing,
1985

[6] Linear Cellular Automata, Harold V. McIntosh, Universidad Autonoma de
Puebla,Mexico, May 20, 1987

[7] Kai Li, IVY: A Shared Virtual Memory System for Parallel Computing, Proceedings
of the 1988 International Conference on Parallel Processing, August 1988

[8] Bal, H., E., Tanenbaum, A., S., Distributed Programming with Shared Data, Interna-
tional Conference on Computer Languages ’88, October 1988

[9] Li, K., Hudak, P., Memory Coherence in Shared Virtual Memory Systems, ACM
Transactions on Computer Systems, November 1989

[10] Fleisch, B., Popek, G., Mirage: A Coherent Distributed Shared Memory Design, Pro-
ceedings of the 14th ACM Symposium on Operating System Principles, ACM, New
York, 1989

[11] Rudy Rucker, John Walker, June 1989, Rudy Rucker’s Cellular Automata Laboratory

[12] UHP (University Henry Poincaré, Nancy) Master and PhD thesis of Thierry Cornu

[13] Bennet, J. K., Carter, J. B., Zwaenepoel, W., Munin: Distributed Shared Memory
Based on Type-Specific Memory Coherence, Proceedings of the 1990 Conference on
Principles and Practice of Parallel Programming, March 1990

[14] Bennet, J., Carter, J., Zwaenepoel, W., Adaptive Software Cache Management for
Distributed Shared Memory Architectures, Proceedings of the 17th Annual Interna-
tional Symposium on Computer Architecture, June 1990

[15] CELIP: A cellular Language for Image Processing, W. Hasselbring, 1990

73

[16] Cellware, 1991

[17] MG Norman, JR Henderson, G. Main, DJ Wallace, The Use of the CAPE Environ-
ment in the Simulation of Rock Fracturing

[18] PhD thesis of Stéphane Vialle, ParCeL-1: A Parallel Language synchronous au-
tonomous actors

[19] Himanshu Shekhar Sinha, Mermera: non-coherent distributed shared memory for par-
allel computing, Boston University, Boston, MA, 1993

[20] Geist, A., Beguelin, A., Dongarra, J., Jiang, W., Manchek, R., Sunderam , V., PVM:
A Users’ Guide and Tutorial for Networked Parallel Computing, MIT Press, 1994

[21] Wen-Yen Liang, Chun-Ta King, Feipei Lai ADSMITH: An efficient object-based dis-
tributed shared memory system on PVM, Proceedings of the 1996 International Sym-
phosium on Parallel Architecture (ISPAN 96), June 1996

[22] Cellular Automaton Tool User Manual, Georg Junger, 1994, GMD, Sankt Augustin

[23] Kutrib, Martin, Parallele Automaten, Bericht Nr. 9401, AG Informatik, Univ. Giessen,
1994

[24] Christian Hichberger and Rolf Hoffmann, CDL - a language for cellular processing,
Proceedings of the Second International Conference on Massively Parallel Computing
Systems, IEEE, 1996

[25] Protic, J., Tomasevic, M., Milutinovic, V.,Tutorial on Distributed Shared Memory
(Lecture Transparencies), IEEE CS Press, Los Alamitos, California, USA, 1997

[26] Demeure, I., Cabrera-Dantart, R., Meunier, P., Phosphorus: A Distributed Shared
Memory System on Top of PVM, In Proceedings of EUROMICRO’95, September
1995

[27] Amza, C., Cox, A. L., Dwarkadas, S., Keleher, P., Lu, H., Rajamony, R., Yu, W.,
Zwaenepoel, W., Treadmarks: Shared memory computing on networks of workstations,
IEEE Computer, February 1996

[28] Keleher, P. CVM: The Coherent Virtual Machine, University of Maryland, Departa-
ment of Computer Science, 1996

[29] Khandeher, D., Quarks: Distributed shared memory as a basic building block for com-
plex parallel and distributed systems, Technical Report Master Thesis, University of
Utah, March 1996

[30] Thomas Worsch - Programming environments for Cellular Automata, Karksruhe Uni-
versity, Informatics Departament, November 1996

[31] Wuensche,A., Discrete Dynamics Lab (DDLab), 1996

[32] Domenico Talia - Cellular automata + Parallel Computing = Computational Simula-
tion, 15th IMACS World Congress on Scientific Computation, Modelling and Applied
Mathematics, Berlin, August 1997

74

[33] Continuous-Valued Cellular Automata for Non-Linear Wave Equations, by Daniel
Ostrov and Rudy Rucker, published Fall 1997

[34] Dreier Bernard, Zahn Markus, Ungerer Theo Parallel and Distributed Programming
with Pthreads and Rthreads, Third International Workshop on High-Level Parallel
Programming Models and Supportive Environments (HIPS’98)

[35] W. Hu, W. Shi and Z. Tang. JIAJIA: An SVM System Based on a New Cache Coher-
ence Protocol In Proc. of the High-Performance Computing and Networking Europe
1999 (HPCN’99), April 1999.

[36] Inagaki Tatsushi, Junperi Niwa, Matsumoto Takashi, Hiraki Kei Supporting Software
Distributed Shared Memory with an Optimizing Compiler, Department of Information
Science, Faculty of Science, Univeristy of Tokyo, ICPP 1998

[37] I. Foster, C. Kesselman,The Grid: Blueprint for a New Computing Infrastructure
Morgan Kaufmann Publishers, San Francisco, California, 1999.

[38] Freiwald, U. and J. Weimar, CASim: Java Environment for Simulating Cellular Au-
tomata, 1999

[39] Ian Foster The Anatomy of the Grid: Enabling Scalable Virtual Organizations, IJSA,
2001

[40] Ian Foster What is the Grid? A Three Point Checklist, July 20, 2002

[41] High Performance Cluster Computing: Architectures and Systems, Rajkumar Buyya,
Prentice Hall, USA, 1999

[42] An object oriented approach to lattice gas modeling, Alexandre Dupuis, Bastien
Chopard, University of Geneva, Switzerland, August 1999

[43] 2000, october 22 - Yann Boniface. Etude et développement d’une bibliothèque
d’adaptation du parallélisme neuromimétique au parallélisme MIMD - Design and im-
plementation of a library to adapt neuromimetic parallelism to MIMD one University
Henri Poincaré - Nancy I. Collaboration with Loria-Cortex team (PhD Thesis also
supervised by Frederic Alexandre), and Charles Hermite Center.

[44] Stéphane Vialle - Parallélisation de réseaux de neurones VS Parallélisation de
systèmes multi-agents

[45] B. Cheung, C. L. Wang and K. Hwang. JUMP-DP: A Software DSM System with
Low-Latency Communication Support In the 2000 International Conference on Parallel
and Distributed Processing Techniques and Applications (PDPTA’2000), Las Vegas,
Nevada, USA.

[46] Spezzano G., Talia D., CAMELot: A Parallel Cellular Environment for Modelling
Complexity, June 2001

[47] Stéphane Vialle - Synthèse des recherches et perspectives en: Parallélisation de
Systèmes de Calculus Distribués dÓrientation Cellulaire, sur Architectures MIMD,
28 Nov. 2002, Supélec, France

75

[48] Stéphane Vialle, Eugen Dedu, Claude Timsit, ParCeL-5/ParSSAP: A Parallel Pro-
gramming Model and Library for Easy Development and Fast Execution of Simulations
of Situated Multi-Agent Systems, 2002

[49] 2002, March 8 - Eugen Dedu, Parallelisation of situated multi-agent systems, Univer-
sity de Versailles St-Quentin. (PhD Thesis supervised by Claude Timsit and Stéphane
Vialle). Collaboration with Charles Hermite Center

[50] Cellular automata models for synchronized traffic flow, Rui Jiang, Qing-Song Wu,
University of Science and Technology of China, November 2002

[51] Cellular Automata Models and MHD Approach in the Context of Solar Flares, Anas-
tasios Anastasiadis, Institute for Space Applications and Remote Sensing, National
Observatory of Athens, 2002

[52] Eckart, J.D., Cellular/Cellang environment, March, 2002

[53] A description of ParCeL6, available from
http://www.metz.supelec.fr/ ersidp/Projects/Parmodel/Parcel-6/Root.html

[54] Chris Gordon-Smith 2003, Flexica - User Manual

[55] Cellular Automata, Klaus Sutner, Carnegie Mellon University, Fall 2003

[56] Radu Kopetz Extension of a parallel library for cellular computing on a cluster of
PCs and on computer grids, 2004, Supélec and University ”Politechnica” of Bucarest
(UPB), supervised by Prof. Stéphane Vialle and Prof. Nicolae Ţăpuş

[57] Building High-Performance Linux Clusters, Sponsored by Appro, Logan G. Harbaugh,
Networking Consultant for Mediatronics

[58] Naumov L., CAMEL - Cellular Automata Modeling Environment and Library, Saint-
Petersburg, 2004

[59] Carotenuto Dario, Definizione ed implementazione di CANL: Cellular Automata Net-
work Language, 15.7.2004

[60] Olivier Ménard, Stéphane Vialle, Hervé Frezza-Buet Making Cortically-Inspired Sen-
sorimotor Control Realistic for Robotics: Design of an Extended Parallel Cellular
Programming Model

[61] Alexander G. Dean, Compiling for Fine-Grain Concurrency: Planning and Perform-
ing Software Thread Integration, Center for Embedded Systems Research, Department
of Electrical and Computer Engineering, NC State University, Raleigh

[62] Kerrighed V1.0 Reference Manual, IRISA/INRIA, 28.02.2005

[63] Pascal Gallard, Kerrighed 1.0.1 - Installation notes, 23.03.2005

76

copyright c©2005 Mircea IFRIM

77

