Chapter 7

Development methodologies for GPU and cluster of GPUs

Sylvain Contassot-Vivier
Université Lorraine, Loria UMR 7503 & AlGorille INRIA Project Team, Nancy, France.

Stephane Vialle
SUPELEC, UMI GT-CNRS 2958 & AlGorille INRIA Project Team, Metz, France.

Jens Gustedt
INRIA Nancy – Grand Est, AlGorille INRIA Project Team, Strasbourg, France.

7.1 Introduction ... 108
7.2 General scheme of synchronous code with computation/communication overlapping in GPU clusters ... 108
 7.2.1 Synchronous parallel algorithms on GPU clusters 108
 7.2.2 Native overlap of CPU communications and GPU computations ... 110
 7.2.3 Overlapping with sequences of transfers and computations 112
 7.2.4 Interleaved communications-transfers-computations overlapping .. 117
 7.2.5 Experimental validation .. 120
7.3 General scheme of asynchronous parallel code with computation/communication overlapping ... 122
 7.3.1 A basic asynchronous scheme ... 124
 7.3.2 Synchronization of the asynchronous scheme 128
 7.3.3 Asynchronous scheme using MPI, OpenMP and CUDA 133
 7.3.4 Experimental validation .. 140
 Synchronous and asynchronous computations 141
 Overlap of auxiliary computations .. 141
7.4 Perspective: A unifying programming model 144
 7.4.1 Resources ... 144
 7.4.2 Control .. 145
 7.4.3 Example: block-cyclic matrix multiplication (MM) 146
 7.4.4 Tasks and operations .. 149
7.5 Conclusion ... 149
7.6 Glossary .. 150
Bibliography .. 151
7.1 Introduction

This chapter proposes to draw several development methodologies to obtain efficient codes in classical scientific applications. Those methodologies are based on the feedback from several research works involving GPUs, either alone in a single machine or in a cluster of machines. Indeed, our past collaborations with industries have allowed us to point out that in their economical context, they can adopt a parallel technology only if its implementation and maintenance costs are small according to the potential benefits (performance, accuracy, ...). So, in such contexts, GPU programming is still regarded with some distance according to its specific field of applicability (SIMD/SIMT model) and its still higher programming complexity and maintenance. In the academic domain, things are a bit different but studies for efficiently integrating GPU computations in multi-core clusters with maximal overlapping of computations with communications and/or other computations, are still rare.

For these reasons, the major aim of that chapter is to propose as simple as possible general programming patterns that can be followed or adapted in practical implementations of parallel scientific applications. Also, we propose in a third part, a prospect analysis together with a particular programming tool that is intended to ease multi-core GPU cluster programming.

7.2 General scheme of synchronous code with computation/communication overlapping in GPU clusters

7.2.1 Synchronous parallel algorithms on GPU clusters

Considered parallel algorithms and implementations

This section focusses on synchronous parallel algorithms implemented with overlapping computations and communications. Parallel synchronous algorithms are easier to implement, debug and maintain than asynchronous ones, see Section 7.3. Usually, they follow a BSP-like parallel scheme, alternating local computation steps and communication steps, see [19]. Their execution is usually deterministic, excepted for stochastic algorithms that contain random number generations. Even in this case, their execution can be controlled during debug steps, allowing to track and to fix bugs quickly.

However, depending on the properties of the algorithm, it is sometimes possible to overlap computations and communications. If processes exchange data that is not needed for the computation that is following immediately, it is possible to implement such an overlap. We have investigated the efficiency of
this approach in previous works [14, 21], using standard parallel programming tools to achieve the implementation.

The normalized and well known Message Passing Interface (MPI) includes some asynchronous point-to-point communication routines, that should allow to implement some communication/computation overlap. However, current MPI implementations do not achieve that goal efficiently; effective overlapping with MPI requires a group of dedicated threads (in our case implemented with OpenMP) for the basic synchronous communications while another group of threads executes computations in parallel. Nevertheless, communication and computation are not completely independent on modern multicore architectures: they use shared hardware components such as the interconnection bus and the RAM. Therefore that approach only saved up to 20% of the expected time on such a platform. This picture changes on clusters equipped with GPU. They effectively allow independence of computations on the GPU and communication on the mainboard (CPU, interconnection bus, RAM, network card).

Specific interests in GPU clusters

In a computing node, a GPU is a kind of scientific coprocessor usually located on an auxiliary board, with its own memory. So, when data have been transferred from the CPU memory to the GPU memory, then GPU computations can be achieved on the GPU board, totally in parallel of any CPU activities (like internode cluster communications). The CPU and the GPU access their respective memories and do not interfere, so they can achieve a very good overlap of their activities (better than two CPU cores).

But using a GPU on a computing node requires to transfer data from the CPU to the GPU memory, and to transfer the computation results back from the GPU to the CPU. Transfer times are not excessive, but depending on the application they still can be significant compared to the GPU computation times. So, sometimes it can be interesting to overlap the internode cluster communications with both the CPU/GPU data transfers and the GPU computations. We can identify four main parallel programming schemes on a GPU cluster:

1. parallelizing only 'internode CPU communications' with 'GPU computations', and achieving CPU/GPU data transfers before and after this parallel step,
2. parallelizing 'internode CPU communications' with a '(sequential) sequence of CPU/GPU data transfers and GPU computations',
3. parallelizing 'internode CPU communications' with a 'streamed sequence of CPU/GPU data transfers and GPU computations',
4. parallelizing 'internode CPU communications' with 'CPU/GPU data transfers and GPU computations'
7.2.2 Native overlap of CPU communications and GPU computations

Using CUDA, GPU kernel executions are non-blocking, and GPU/CPU data transfers are blocking or non-blocking operations. All GPU kernel executions and CPU/GPU data transfers are associated to "streams", and all operations on a same stream are serialized. When transferring data from the CPU to the GPU, then running GPU computations and finally transferring results from the GPU to the CPU, there is a natural synchronization and serialization if these operations are achieved on the same stream. GPU developers can choose to use one (default) or several streams. In this first scheme of overlapping, we consider parallel codes using only one GPU stream.

"Non-blocking GPU kernel execution" means a CPU routine runs a parallel execution of a GPU computing kernel, and the CPU routine continues its execution (on the CPU) while the GPU kernel is running (on the GPU). Then the CPU routine can initiate some communications with some others CPU, and so it automatically overlaps the internode CPU communications with the GPU computations (see Figure 7.1). This overlapping is natural when programming with CUDA and MPI: it is easy to deploy, but does not overlap the CPU/GPU data transfers.
Listing 7.1: Generic scheme implicitly overlapping MPI communications with CUDA GPU computations

```c
// Input data and result variables and arrays (example with
// float datatype, 1D input arrays, and scalar results)
float *cpuInputTabAdr, *gpuInputTabAdr;
float *cpuResTabAdr, *gpuResAdr;

// CPU and GPU array allocations
cpuInputTabAdr = malloc(sizeof(float)*N);
cudaMalloc(&gpuInputTabAdr, sizeof(float)*N);
cpuResTabAdr = malloc(sizeof(float)*NbIter);
cudaMalloc(&gpuResAdr, sizeof(float));

// Definition of the Grid of blocks of GPU threads
dim3 Dg, Db;
Dg.x = ...
...

// Indexes of source and destination MPI processes
int dest = ...
int src = ...

// Computation loop (using the GPU)
for (int i = 0; i < NbIter; i++) {
    cudaMemcpy(gpuInputTabAdr, cpuInputTabAdr, sizeof(float)*N, cudaMemcpyHostToDevice);
    gpuKernel_k1<<<Dg,Db>>>(i);
    MPI_Sendrecv_replace(cpuInputTabAdr, sizeof(float), MPI_FLOAT, dest, 0, src, 0, ...
    cudaMemcpy(cpuResTabAdr + i, gpuResAdr, sizeof(float), cudaMemcpyDeviceToHost);
}
```

Listing 7.1 introduces the generic code of a MPI+CUDA implementation, natively and implicitly overlapping MPI communications with CUDA GPU computations. Some input data and output results arrays and variables are declared and allocated from line 1 up to 10, and a computation loop is implemented from line 21 up to 34. At each iteration:

- `cudaMemcpy` on line 23 transfers data from the CPU memory to the GPU memory. This is a basic and synchronous data transfer.
- `gpuKernel_k1<<<Dg,Db>>>(i)` on line 26 starts GPU computation (running a GPU kernel on the grid of blocks of threads defined at line 12 to 15). This is a standard GPU kernel run, it is an asynchronous operation. The CPU can continue to run its code.
- `MPI_Sendrecv_replace` on line 27 achieves some blocking internode communications, overlapping GPU computations started just before.
- If needed, `cudaMemcpy` on line 31 transfers the iteration result from one variable in the GPU memory at one array index in the CPU memory
Designing Scientific Applications on GPUs

2 - Sync. CPU --> GPU data transfer
2 - Async. GPU parallel computation
1 - Synchronous internode CPU comms

FIGURE 7.2: Overlap of internode CPU communications with a sequence of CPU/GPU data transfers and GPU computations.

(in this example the CPU collects all iteration results in an array). This operation is started after the end of the MPI communication (previous instruction) and after the end of the GPU kernel execution. CUDA ensures an implicit synchronization of all operations involving the same GPU stream, like the default stream in this example. Result transfer has to wait the GPU kernel execution finishes. If there is no result transfer implemented, the next operation on the GPU will wait until the GPU kernel execution will be ended. This implementation is the easiest one involving the GPU. It achieves an implicit overlap of internode communications and GPU computations, no explicit multithreading is required on the CPU. However, CPU/GPU data transfers are achieved serially and not overlapped.

7.2.3 Overlapping with sequences of transfers and computations

Overlapping with a sequential GPU sequence

When CPU/GPU data transfers are not negligible compared to GPU computations, it can be interesting to overlap internode CPU computations with a GPU sequence including CPU/GPU data transfers and GPU computations (see Figure 7.2). Algorithmic issues of this approach are basic, but their implementation require explicit CPU multithreading and synchronization, and CPU data buffer duplication. We need to implement two threads, one starting and achieving MPI communications, and the other running the GPU sequence. OpenMP allows an easy and portable implementation of this overlapping strategy. However, it remains more complex to develop and to maintain than the previous strategy (overlapping only internode CPU communications...
and GPU computations), and should be adopted only when CPU/GPU data transfer times are not negligible.

Listing 7.2: Generic scheme explicitly overlapping MPI communications with sequences of CUDA CPU/GPU transfers and CUDA GPU computations

```c
// Input data and result variables and arrays (example with
// float datatype, 1D input arrays, and scalar results)
float *cpuInputTabAdrCurrent, *cpuInputTabAdrFuture, *gpuInputTabAdr;
float *cpuResTabAdr, *gpuResAdr;

// CPU and GPU array allocations
cpuInputTabAdrCurrent = malloc(sizeof(float)*N);
cpuInputTabAdrFuture = malloc(sizeof(float)*N);
cudaMalloc(&gpuInputTabAdr, sizeof(float)*N);
cpuResTabAdr = malloc(sizeof(float)*NbIter);
cudaMalloc(&gpuResAdr, sizeof(float));

// Definition of the Grid of blocks of GPU threads
dim3 Dg, Db;

// Indexes of source and destination MPI processes
int dest = ...;
int src = ...;

// Set the number of OpenMP threads (to create) to 2
omp_set_num_threads(2);
#pragma omp parallel
{
    // Buffer pointers (thread local variables)
    float *current = cpuInputTabAdrCurrent;
    float *future = cpuInputTabAdrFuture;
    float *tmp;

    // Computation loop (using the GPU)
    for (int i = 0; i < NbIter; i++) {
        // Thread 0: achieves MPI communications
        if (omp_get_thread_num() == 0) {  // MPI commns. (sync. op)
            MPI_Sendrecv(current, N, MPI_FLOAT, dest, 0,
                          future, N, MPI_FLOAT, dest, 0, ...);
        } else if (omp_get_thread_num() == 1) {  // Data transfer:
            cudaMemcpy(gpuInputTabAdr, current, sizeof(float)*N,  // CPU -> GPU (sync. op)
                        cudaMemcpyHostToDevice);
            gpuKernel k1<<<Dg,Db>>>(...);
            cudaMemcpy(gpuResTabAdr + i, gpuResAdr, sizeof(float),  // Data transfer:
                        cudaMemcpyDeviceToHost);
        }
    }
    // Wait for both threads to achieve their iteration tasks
#pragma omp barrier
    // Each thread permute its local buffer pointers
```
Listing 7.2 introduces the generic code of a MPI+OpenMP+CUDA implementation, explicitly overlapping MPI communications with *GPU sequences*. Lines 25–62 implement the OpenMP parallel region, around the computation loop (lines 33–61). For performances it is important to create and destroy threads only one time (not at each iteration): the parallel region has to surround the computation loop. Lines 1–11 consist in declaration and allocation of input data arrays and result arrays and variables, like in previous algorithm (Listing 7.1). However, we implement two input data buffers on the CPU (current and future version). As we aim to overlap internode MPI communications and GPU sequence, including CPU to GPU data transfer of current input data array, we need to store the received new input data array in a separate buffer. Then, the current input data array will be safely read on the CPU and copied into the GPU memory.

The thread creations are easily achieved with one OpenMP directive (line 25). Then each thread defines and initializes its local buffer pointers, and enters its computing loop (lines 27–33). Inside the computing loop, a test on the thread number allows to run a different code in each thread. Lines 37–40 implement the MPI synchronous communication run by thread number 0. Lines 45–52 implement the GPU sequence run by thread 1: CPU to GPU data transfer, GPU computation and GPU to CPU result transfer (if needed). Details of the three operations of this sequence have not changed compared to the previous overlapping strategy.

At the end of Listing 7.2, an OpenMP synchronization barrier on line 56 allows to wait OpenMP threads have achieved MPI communications and GPU sequence, and do not need to access the current input data buffer. Then, each thread permute its local buffer pointers (lines 58–60), and is ready to enter the next iteration, processing the new current input array.

Overlapping with a streamed GPU sequence

Depending on the algorithm implemented, it is sometimes possible to split the GPU computation into several parts processing distinct data. Then, we can speedup the *GPU sequence* using several CUDA *streams*. The goal is to overlap CPU/GPU data transfers with GPU computations inside the *GPU sequence*. Compared to the previous overlapping strategy, we have to split the initial data transfer in a set of *n* asynchronous and smaller data transfers, and to split the initial GPU kernel call in a set of *n* calls to the same GPU kernel. Usually, these smaller calls are deployed with less GPU threads (i.e. associated to a smaller grid of blocks of threads). Then, the first GPU computations can start as soon as the first data transfer has been achieved, and next transfers can be done in parallel of next GPU computations (see Figure 7.3).
NVIDIA advises to start all asynchronous CUDA data transfers, and then to call all CUDA kernel executions, using up to 16 streams [17]. Then, CUDA driver and runtime optimize the global execution of these operations. So, we cumulate two overlapping mechanisms. The former is controlled by CPU multithreading, and overlap MPI communications and the *streamed GPU sequence*. The latter is controlled by CUDA programming, and overlap CPU/GPU data transfers and GPU computations. Again, OpenMP allows to easily implement the CPU multithreading, and to wait for the end of both CPU threads before to execute the next instructions of the code.

Listing 7.3: Generic scheme explicitly overlapping MPI communications with streamed sequences of CUDA CPU/GPU transfers and CUDA GPU computations

```c
// Input data and result variables and arrays (example with float datatype, 1D input arrays, and scalar results)
float *cpuInputTabAdrCurrent, *cpuInputTabAdrFuture, *gpuInputTabAdr;
float *cpuResTabAdr, *gpuResAdr;

// CPU and GPU array allocations (allocates page-locked CPU memory)
cudaHostAlloc(&cpuInputTabAdrCurrent, sizeof(float)*N);
cudaHostAllocDefault;
cudaHostAlloc(&cpuInputTabAdrFuture, sizeof(float)*N);
cudaHostAllocDefault;
cudaMalloc(&gpuInputTabAdr, sizeof(float)*N);
cudaMalloc(&gpuInputTabAdrFuture, sizeof(float)*N);
cudaMalloc(&cpuResTabAdr, sizeof(float)*NbIter);
cudaMalloc(&gpuResAdr, sizeof(float));

// Stream declaration and creation
cudaStream_t TabS[NbS];
for (int s = 0; s < NbS; s++)
cudaStreamCreate(&TabS[s]);

// Definition of the Grid of blocks of GPU threads
// Set the number of OpenMP threads (to create) to 2
omp_set_num_threads(2);
#pragma omp parallel
{
    // Buffer pointers (thread local variables)
    float *current = cpuInputTabAdrCurrent;
    float *future = cpuInputTabAdrFuture;
    // CPU thread creation and synchronization barrier
    // GPU thread exec.
    // Async. CPU --> GPU data transfers on streams
    // Async. GPU parallel computations on streams
    // Async GPU --> CPU data transfers on streams
    // Automatic resynchronization on each stream
    // CPU main thread next instructions
    // MPI comms
    // Waiting
    // 2 - Async. CPU --> GPU data transfers on streams
    // 2 - Async. GPU parallel computations on streams
    // 1 - Synchronous internode CPU comms
}
```

FIGURE 7.3: Overlap of internode CPU communications with a streamed sequence of CPU/GPU data transfers and GPU computations.
Listing 7.3 introduces the generic MPI+OpenMP+CUDA code explicitly overlapping MPI communications with streamed GPU sequences. Efficient usage of CUDA streams requires to execute asynchronous CPU/GPU data transfers, that needs to read page-locked data in CPU memory. So, CPU memory allocations on lines 6 and 7 are implemented with `cudaHostAlloc` instead of the basic `malloc` function. Then, \(NbS \) streams are created on lines 12–14. Usually we create 16 streams: the maximum number supported by CUDA.

An OpenMP parallel region including two threads is implemented on lines 17–61 of Listing 7.3, similarly to the previous algorithm (see Listing 7.2). Code of thread 0 achieving MPI communication is unchanged, but code of thread 1 is now using streams. Following NVIDIA recommendations, we have first implemented a loop starting \(NbS \) asynchronous data transfers (lines 39–45):
transferring N/NbS data on each stream. Then we have implemented a second loop (lines 46–48), starting asynchronous executions of NbS grids of blocks of GPU threads (one per stream). Data transfers and kernel executions on the same stream are synchronized by CUDA and the GPU. So, each kernel execution will start after its data will be transferred into the GPU memory, and the GPU scheduler ensures to start some kernel executions as soon as the first data transfers are achieved. Then, next data transfers will be overlapped with GPU computations. After the kernel calls, on the different streams, we wait for the end of all GPU threads previously run, calling an explicit synchronization function on line 49. This synchronization is not mandatory, but it will make the implementation more robust and will facilitate the debugging steps: all GPU computations run by the OpenMP thread number 1 will be achieved before this thread will enter a new loop iteration, or before the computation loop will be ended.

If a partial result has to be transferred from GPU to CPU memory at the end of each loop iteration (for example the result of one reduction per iteration), this transfer is achieved synchronously on the default stream (no particular stream is specified) on lines 51–54. Availability of the result values is ensured by the synchronization implemented on line 49. However, if a partial result has to be transferred on the CPU on each stream, then NbS asynchronous data transfers could be started in parallel (one per stream), and should be implemented before the synchronization operation on line 49. The end of the computation loop includes a synchronization barrier of the two OpenMP threads, waiting they have finished to access the different data buffers in the current iteration. Then, each OpenMP thread exchanges its local buffer pointers, like in the previous algorithm. However, after the computation loop, we have added the destruction of the CUDA streams (lines 63–65).

Finally, CUDA streams have been used to extend Listing 7.2 with respect to its global scheme. Listing 7.3 still creates an OpenMP parallel region, with two CPU threads, one in charge of MPI communications, and the other managing data transfers and GPU computations. Unfortunately, using GPU streams require to be able to split a GPU computation in independent subparts, working on independent subsets of data. Listing 7.3 is not so generic than Listing 7.2.

7.2.4 Interleaved communications-transfers-computations overlapping

Many algorithms do not support to split data transfers and kernel calls, and can not exploit CUDA streams. For example, when each GPU thread requires to access some data spread in the global set of transferred data. Then, it is possible to overlap internode CPU communications and CPU/GPU data transfers and GPU computations, if the algorithm achieves computation-communication iterations and if we can interleave these iterations. At iteration k: CPUs exchange data D_k, each CPU/GPU couple transfers data D_k, and
FIGURE 7.4: Complete overlap of internode CPU communications, CPU/GPU data transfers and GPU computations, interleaving computation-communication iterations

each GPU achieves computations on data D_{k-1} (see Figure 7.4). Compared to the previous strategies, this strategy requires twice as many CPU data buffers and twice as many GPU buffers.

```
Listing 7.4: Generic scheme explicitly overlapping MPI communications, CUDA CPU/GPU transfers and CUDA GPU computations, interleaving computation-communication iterations

// Input data and result variables and arrays (example with
// float datatype, 1D input arrays, and scalar results)
float *cpuInputTabAdrCurrent, *cpuInputTabAdrFuture;
float *gpuInputTabAdrCurrent, *gpuInputTabAdrFuture;
float *cpuResTabAdr, *gpuResAdr;

// CPU and GPU array allocations
cpuInputTabAdrCurrent = malloc(sizeof(float)*N);
cpuInputTabAdrFuture = malloc(sizeof(float)*N);
gpuInputTabAdrCurrent = malloc(sizeof(float)*N);
gpuInputTabAdrFuture = malloc(sizeof(float)*N);
cpuResTabAdr = malloc(sizeof(float)*NbIter);
gpuResAdr = malloc(sizeof(float));

// Definition of the Grid of blocks of GPU threads
dim3 Dg, Db; Dg.x = ...

// Indexes of source and destination MPI processes
int dest, src; dest = ...

// Set the number of OpenMP threads (to create) to 2
omp_set_num_threads(2);
// Create threads and start the parallel OpenMP region
#pragma omp parallel
{
  // Buffer pointers (thread local variables)
  float *cpuCurrent = cpuInputTabAdrCurrent;
  float *cpuFuture = cpuInputTabAdrFuture;
  float *gpuCurrent = gpuInputTabAdrCurrent;
  float *gpuFuture = gpuInputTabAdrFuture;
  float *tmp;

  // Computation loop on: NbIter + 1 iteration
  for (int i = 0; i < NbIter + 1; i++)
  {
    // Thread 0: achieves MPI communications
    if (omp_get_thread_num() == 0)
      if (i < NbIter) {
        MPI_Sendrecv(cpuCurrent, N, MPIFLOAT, dest, 0,
```
Listing 7.4 introduces the generic code of a MPI+OpenMP+CUDA implementation, explicitly interleaving computation-communication iterations and overlapping MPI communications, CUDA CPU/GPU transfers and CUDA GPU computations. As in the previous algorithms, we declare two CPU input data arrays (current and future version) on line 3, but we also declare two GPU input data arrays on line 4. On lines 8–11, these four data arrays are allocated, using malloc and cudaMalloc. We do not need to allocate page-locked memory space. On lines 23–65 we create an OpenMP parallel region, configured to run three threads (see line 21). Lines 26–30 are declarations of thread local pointers on data arrays and variables (each thread will use its own pointers). On line 33, the three threads enter a computation loop of NbIter + 1 iterations. We need to run one more iteration than with previous algorithms.

Lines 34–41 are the MPI communications, achieved by the thread number 0. They send the current CPU input data array to another CPU, and receive the future CPU input data array from another CPU, like in previous algorithms. But this thread achieves communications only during the first NbIter iterations. Lines 43–48 are the CPU to GPU input data transfers, achieved by thread number 1. These data transfers are run in parallel of MPI communications. They are run during the first NbIter iterations, and transfer current CPU input data array into the future GPU data array. Lines 50–57 correspond to the code run by thread number 3. They start GPU computations, to process the current GPU input data array, and if necessary transfer
Designing Scientific Applications on GPUs

a GPU result at an index of the CPU result array. These GPU computations and result transfers are run during the last NbIter iterations: the GPU computations have to wait the first data transfer is ended before to start to process any data, and can not run during the first iteration. So, the activity of the third thread is shifted of one iteration compared to the activities of other threads. Moreover, the address of the current GPU input data array has to be passed as a parameter of the kernel call on line 52, in order the GPU threads access the right data array. Like in previous algorithms the GPU result is copied at one index of the CPU result array, in lines 53–56, but due to the shift of the third thread activity this index is now (i - 1).

Line 60 is a synchronization barrier of the three OpenMP threads, followed by a pointer permutation of local pointers on current and future data arrays, on line 62 and 63. Each thread waits for the completion of other threads to use the data arrays, and then permutes its data array pointers before to enter a new loop iteration.

This complete overlap of MPI communications and CPU/GPU data transfers and GPU computations, is not too complex to implement, and can be a solution when GPU computations are not adapted to use CUDA streams: when GPU computations can not be split in subparts working on independent subsets of input data. However, it requires to run one more iterations (a total of NbIter + 1 iterations). Then, if the number of iterations is very small, it could be more interesting not to attempt to overlap CPU/GPU data transfers and GPU computations, and to implement Listing 7.2.

7.2.5 Experimental validation

Experimentation testbed

Two clusters located at SUPELEC in Metz (France) have been used for the entire set of experiments presented in this chapter:

- The first consists of 17 nodes with an Intel Nehalem quad-core processor at 2.67Ghz, 6 Gb RAM and an NVIDIA GeForce GTX480 GPU, each.
- The second consists of 16 nodes with an Intel core2 dual-core processor at 2.67Ghz, 4 Gb RAM and an NVIDIA GeForce GTX580 GPU, each.

Both clusters have a Gigabit Ethernet interconnection network that is connected through a DELL Power Object 5324 switch. The two switches are linked twice, insuring the interconnection of the two clusters. The software environment consists of a Linux Fedora 64bit OS (kernel v. 2.6.35), GNU C and C++ compilers (v. 4.5.1) and the CUDA library (v. 4.2).

Validation of the synchronous approach

We have experimented our approach of synchronous parallel algorithms with a classic block cyclic algorithm for dense matrix multiplication. This
Development methodologies for GPU and cluster of GPUs

![Graph showing the relationship between GFlops and the number of nodes.](image)

FIGURE 7.5: Experimental performances of different synchronous algorithms computing a dense matrix product

...problem requires to split two input matrices (A and B) on a ring of computing nodes, and to establish a circulation of the slices of A matrix on the ring (B matrix partition does not evolve during all the run). Compared to our generic algorithms, there is no partial result to transfer from GPU to CPU at the end of each computing iteration. The part of the result matrix computed on each GPU is transferred on the CPU at the end of the computation loop.

We have first implemented a synchronous version without any overlap of MPI communications, CPU/GPU data transfers, and GPU computations. We have added some synchronizations in the native overlapping version in order to avoid any overlap. We have measured the performance achieved on our cluster with NVIDIA GTX480 GPUs and matrices sizes of 4096×4096, and we have obtained the curves in Figure 7.5 labeled `no-ovlp`. We observe that performance increases when the number of processors increases. Of course, there is a significant increase in cost when comparing a single node (without any MPI communication) with two nodes (starting to use MPI communications). But beyond two nodes we get a classical performance curve.

Then, we implemented and experimented Listing 7.1, see `ovlp-native` in Figure 7.5. The native overlap of MPI communications with asynchronous run of CUDA kernels appears efficient. When the number of nodes increases the ratio of the MPI communications increases a lot (because the computation times decrease a lot). So, there is not a lot of GPU computation time that remains to be overlapped, and both `no-ovlp` and `ovlp-native` tend to the same limit. Already, the native overlap performed in Listing 7.1 achieves a high level of performance very quickly, using only four nodes. Beyond four nodes, a faster interconnection network would be required for a performance increase.

Finally, we implemented Listing 7.2, overlapping MPI communications...
Designing Scientific Applications on GPUs

with a GPU sequence including both CPU/GPU data transfers and GPU computations, see ovlp-GPUsequence in Figure 7.5. From four up to sixteen nodes it achieves better performances than ovlp-native: we better overlap MPI communications. However, this parallelization mechanism has more overhead: OpenMP threads have to be created and synchronized. Only for two nodes it is less efficient than the native overlapping algorithm. Beyond two nodes, the CPU multithreading overhead seems compensated. Listing 7.2 requires more time for the implementation and can be more complex to maintain, but such extra development cost is justified if we are looking for better performance.

7.3 General scheme of asynchronous parallel code with computation/communication overlapping

In the previous part, we have seen how to efficiently implement overlap of computations (CPU and GPU) with communications (GPU transfers and inter-node communications). However, we have previously shown that for some parallel iterative algorithms, it is sometimes even more efficient to use an asynchronous scheme of iterations [3, 4, 11]. In that case, the nodes do not wait for each others but they perform their iterations using the last external data they have received from the other nodes, even if this data was produced before the previous iteration on the other nodes.

Formally, if we denote by $f = (f_1, \ldots, f_n)$ the function representing the iterative process and by $x^t = (x^t_1, \ldots, x^t_n)$ the values of the n elements of the system at iteration t, we pass from a synchronous iterative scheme of the form:

Algorithm 4: Synchronous iterative scheme

1. $x^0 = (x^0_1, \ldots, x^0_n)$;
2. for $t = 0, 1, \ldots$ do
3. for $i = 1, \ldots, n$ do
4. $x^{t+1}_i = f_i(x^t_1, \ldots, x^t_i, \ldots, x^t_n)$;
5. end
6. end
to an asynchronous iterative scheme of the form:

Algorithm 5: Asynchronous iterative scheme

1. \(x^0 = (x^0_1, ..., x^0_n); \)
2. for \(t = 0, 1, ... \) do
3. for \(i = 1, ..., n \) do
4. \(x^{t+1}_i = \begin{cases}
 x^t_i & \text{if } i \text{ is not updated at iteration } t \\
 f_i(x^t_1, ..., x^t_n) & \text{if } i \text{ is updated at iteration } t
 \end{cases} \)
5. end
6. end

where \(s^t_j \) is the iteration number of the production of the value \(x_j \) of element \(j \) that is used on element \(i \) at iteration \(t \) (see for example [9, 12] for further details). Such schemes are called AIAC for *Asynchronous Iterations and Asynchronous Communications*. They combine two aspects that are respectively different computation speeds of the computing elements and communication delays between them.

The key feature of such algorithmic schemes is that they may be faster than their synchronous counterparts due to the implied total overlap of computations with communications: in fact, this scheme suppresses all the idle times induced by nodes synchronizations between each iteration.

However, the efficiency of such a scheme is directly linked to the frequency at which new data arrives on each node. Typically, if a node receives newer data only every four or five local iterations, it is strongly probable that the evolution of its local iterative process will be slower than if it receives data at every iteration. The key point here is that this frequency does not only depend on the hardware configuration of the parallel system but it also depends on the software that is used to implement the algorithmic scheme.

The impact of the programming environments used to implement asynchronous algorithms has already been investigated in [5]. Although the features required to efficiently implement asynchronous schemes have not changed, the available programming environments and computing hardware have evolved, in particular now GPUs are available. So, there is a need to reconsider the implementation schemes of AIAC according to the new de facto standards for parallel programming (communications and threads) as well as the integration of the GPUs. One of the main objectives here is to obtain a maximal overlap between the activities of the three types of devices that are the CPU, the GPU and the network. Moreover, another objective is to present what we think is the best compromise between the simplicity of the implementation and its maintainability on one side and its performance on the other side. This is especially important for industries where implementation and maintenance costs are strong constraints.

For the sake of clarity, we present the different algorithmic schemes in a progressive order of complexity, from the basic asynchronous scheme to the complete scheme with full overlap. Between these two extremes, we propose...
a synchronization mechanism on top of our asynchronous scheme that can be used either statically or dynamically during the application execution.

Although there exist several programming environments for inter-node communications, multi-threading and GPU programming, a few of them have become de facto standards, either due to their good stability, their ease of use and/or their wide adoption by the scientific community. Therefore, as in the previous section all the schemes presented in the following use MPI [1], OpenMP [2] and CUDA [18]. However, there is no loss of generality as those schemes may easily be implemented with other libraries.

Finally, in order to stay as clear as possible, only the parts of code and variables related to the control of parallelism (communications, threads,...) are presented in our schemes. The inner organization of data is not detailed as it depends on the application. We only consider that we have two data arrays (previous version and current version) and communication buffers. However, in most of the cases, those buffers can correspond to the data arrays themselves to avoid data copies.

7.3.1 A basic asynchronous scheme

The first step toward our complete scheme is to implement a basic asynchronous scheme that includes an actual overlap of the communications with the computations. In order to ensure that the communications are actually performed in parallel of the computations, it is necessary to use different threads. It is important to remember that asynchronous communications provided in communication libraries like MPI are not systematically performed in parallel of the computations [15, 21]. So, the logical and classical way to implement such an overlap is to use three threads: one for computing, one for sending and one for receiving. Moreover, since the communication is performed by threads, blocking synchronous communications can be used without deteriorating the overall performance.

In this basic version, the termination of the global process is performed individually on each node according to their own termination. This can be guided by either a number of iterations or a local convergence detection. The important step at the end of the process is to perform the receptions of all pending communications in order to ensure the termination of the two communication threads.

So, the global organization of this scheme is set up in Listing 7.5.

Listing 7.5: Initialization of the basic asynchronous scheme

```c
// Variables declaration and initialization
omp_lock_t lockSend; // Controls the sendings from the computing thread
omp_lock_t lockRec; // Ensures the initial reception of external data
char Finished = 0; // Boolean indicating the end of the process
char SendsInProgress = 0; // Boolean indicating if previous data sendings are still in progress
double Threshold; // Threshold of the residual for convergence detection
```
In this scheme, the `lockRec` mutex is not mandatory. It is only used to ensure that data dependencies are actually exchanged at the first iteration of the process. Data initialization and distribution (lines 16-17) are not detailed here because they are directly related to the application. The important point is that, in most cases, they should be done before the iterative process. The computing function is given in Listing 7.6.

Listing 7.6: Computing function in the basic asynchronous scheme

```c
// Variables declaration and initialization
int iter = 1; // Number of the current iteration
double difference; // Variation of one element between two iterations
double residual; // Residual of the current iteration

// Computation loop
```
while(!Finished){
 // Sendings of data dependencies if there is no previous sending in progress
 if(!SendsInProgress){
 // Potential copy of data to be sent in additional buffers
 // Change of sending state
 SendsInProgress = 1;
 omp_unset_lock(&lockSend);
 }

 // Blocking receptions at the first iteration
 if(iter == 1){
 omp_set_lock(&lockRec);
 }

 // Initialization of the residual
 residual = 0.0;

 // Swapping of data arrays (current and previous)
 tmp = current; // Pointers swapping to avoid current = previous; // actual data copies between previous = tmp; // the two data versions

 // Computation of current iteration over local data
 for(ind=0; ind<localSize; ++ind){
 // Updating of current array using previous array
 // Updating of the residual
 // (max difference between two successive iterations)
 difference = fabs(current[ind] - previous[ind]);
 if(difference > residual){
 residual = difference;
 }
 }

 // Checking of the end of the process (residual under threshold)
 // Other conditions can be added to the termination detection
 if(residual <= Threshold){
 Finished = 1;
 omp_unset_lock(&lockSend); // Activation of end messages sendings
 MPI_Ssend(&Finished, 1, MPI_CHAR, numP, tagEnd, MPI_COMM_WORLD);
 }

 // Updating of the iteration number
 iter++;
}

As mentioned above, it can be seen in line 18 of Listing 7.6 that the lockRec mutex is used only at the first iteration to wait for the initial data dependencies before the computations. The residual, initialized in line 23 and computed in lines 34-37, is defined by the maximal difference between the elements from two consecutive iterations. It is classically used to detect the local convergence of the process on each node. In the more complete schemes presented in the sequel, a global termination detection that takes the states of all the nodes into account will be exhibited.

Finally, the local convergence is tested and updated when necessary. In line 44, the lockSend mutex is unlocked to allow the sending function to send final messages to the dependency nodes. Those messages are required to keep the reception function alive until all the final messages have been received. Otherwise, a node could stop its reception function whereas other nodes are still trying to communicate with it. Moreover, a local sending of a
Development methodologies for GPU and cluster of GPUs

final message to the node itself is required (line 45) to ensure that the reception function will not stay blocked in a message probing (see Listing 7.8, line 11). This may happen if the node receives the final messages from its dependencies before being itself in local convergence.

All the messages but this final local one are performed in the sending function described in Listing 7.7.

The main loop is only conditioned by the end of the computing process (line 4). At each iteration, the thread waits for the permission from the computing thread (according to the lockSend mutex). Then, data are sent with blocking synchronous communications. The SendsInProgress boolean allows the computing thread to skip data sendings as long as a previous sending is in progress. This skip is possible due to the nature of asynchronous algorithms that allows such message loss or message miss. After the main loop, the final messages are sent to the dependencies of the node.

Listing 7.7: Sending function in the basic asynchronous scheme

```c
// Variables declaration and initialization
...
while (!Finished)
{
  omp_set_lock(&lockSend); // Waiting for signal from the comp. thread
  if (!Finished)
  {
    // Blocking synchronous sends to all dependencies
    for (i=0; i<nbDeps; ++i){
      MPI_Ssend(&dataToSend[deps[i]], nb_data, type_of_data, deps[i],
        tagCom, MPI_COMM_WORLD);
    }
    SendsInProgress = 0; // Indicates that the sendings are done
  }
}
// At the end of the process, sendings of final messages
for (i=0; i<nbDeps; ++i){
  MPI_Ssend(&Finished, 1, MPI_CHAR, deps[i], tagEnd, MPI_COMM_WORLD);
}
```

The last function, detailed in Listing 7.8, does all the messages receptions.

Listing 7.8: Reception function in the basic asynchronous scheme

```c
// Variables declaration and initialization
char countReceipts = 0; // Boolean indicating whether receptions are counted or not
int nbEndMsg = 0; // Number of end messages received
int arrived = 0; // Boolean indicating if a message is arrived
int srcNd; // Source node of the message
int size; // Message size

// Main loop of receptions
while (!Finished)
{
  // Waiting for an incoming message
  MPI_Probe(MPI_ANY_SOURCE, MPI_ANY_TAG, MPI_COMM_WORLD, &status);
  if (!Finished)
  {
    // Management of data messages
    switch (status.MPI_TAG){
      case tagCom: // Management of data messages
        srcNd = status.MPI_SOURCE; // Get the source node of the message
        // Actual data reception in the corresponding buffer
        break;
    }
  }
  // Management of end messages
  if (status.MPI_TAG == tagEnd){
    countReceipts++; // Increment the count of received messages
    if (countReceipts == nbEndMsg){
      // The node has received all end messages, it can finish
      Finished = 1;
    }
  }
  // Management of arrived messages
  if (status.MPI_TAG == tagArrived){
    arrived = 1; // The node has received an arrived message
  }
}
```

...
As in the sending function, the main loop of receptions is done while the iterative process is not finished. In line 11, the thread waits until a message arrives on the node. Then, it performs the actual reception and the corresponding subsequent actions (potential data copies for data messages and counting for end messages). Lines 20-23 check that all data dependencies have been received before unlocking the lockRec mutex. As mentioned before, they are not mandatory and are included only to ensure that all data dependencies are received at the first iteration. Lines 25-28 are required to manage end messages that arrive on the node before it reaches its own termination process. As the nodes are not synchronized, this may happen. Finally, lines 34-43 perform the receptions of all pending communications, including the remaining end messages (at least the one from the node itself).

So, with those algorithms, we obtain a quite simple and efficient asynchronous iterative scheme. It is interesting to notice that GPU computing can be easily included in the computing thread. This will be fully addressed in paragraph 7.3.3. However, before presenting the complete asynchronous scheme with GPU computing, we have to detail how our initial scheme can be made synchronous.
7.3.2 Synchronization of the asynchronous scheme

The presence of synchronization in the previous scheme may seem contradictory to our goal, and obviously, it is neither the simplest way to obtain a synchronous scheme nor the most efficient (as presented in Section 7.2). However, it is necessary for our global convergence detection strategy. Recall that the global convergence is the extension of the local convergence concept to all the nodes. This implies that all the nodes have to be in local convergence at the same time to achieve global convergence. Typically, if we use the residual and a threshold to stop the iterative process, all the nodes have to continue their local iterative process until all of them obtain a residual under the threshold.

In our context, the interest of being able to dynamically change the operating mode (sync/async) during the process execution, is that this strongly simplifies the global convergence detection. In fact, our past experience in the design and implementation of global convergence detection in asynchronous algorithms [5–7], have led us to the conclusion that although a decentralized detection scheme is possible and may be more efficient in some situations, its much higher complexity is an obstacle to actual use in practice, especially in industrial contexts where implementation/maintenance costs are strong constraints. Moreover, although the decentralized scheme does not slow down the computations, it requires more iterations than a synchronous version and thus may induce longer detection times in some cases. So, the solution we present below is a good compromise between simplicity and efficiency. It consists in dynamically changing the operating mode between asynchronous and synchronous during the execution of the process in order to check the global convergence. This is why we need to synchronize our asynchronous scheme.

In each algorithm of the initial scheme, we only exhibit the additional code required to change the operating mode.

```
// Variables declarations and initialization
char localCV = 0;      // Boolean indicating whether the local stabilization is reached or not
int nbOtherCVs = 0;    // Number of other nodes being in local stabilization

// Parameters reading

// MPI initialization

// Data initialization and distribution among the nodes

// OpenMP initialization (mainly declarations and setting up of locks)
omp_init_lock(&lockStates);
omp_set_lock(&lockStates);  // Initially locked, unlocked when all state messages are received
```

Listing 7.9: Initialization of the synchronized scheme
As can be seen in Listing 7.9, the synchronization implies two additional mutex. The lockStates mutex is used to wait for the receptions of all state messages coming from the other nodes. As shown in Listing 7.10, those messages contain only a boolean indicating for each node if it is in local convergence. So, once all the states are received on a node, it is possible to determine if all the nodes are in local convergence, and thus to detect the global convergence. The lockIter mutex is used to synchronize all the nodes at the end of each iteration. There are also two new variables that respectively represent the local state of the node (localCV) according to the iterative process (convergence) and the number of other nodes that are in local convergence (nbOtherCVs).

The computation thread is where most of the modifications take place, as shown in Listing 7.10.

```plaintext
// Variables declarations and initialization
...

// Computation loop
while(!Finished){
    // Sendings of data dependencies at each iteration
    // Potential copy of data to be sent in additional buffers
    omp_unset_lock(&lockSend);
    // Blocking receptions at each iteration
    omp_set_lock(&lockRec);
    // Local computation
    // (init of residual, arrays swapping and iteration computation)
    ...
    // Checking of the stabilization of the local process
    // Other conditions than the residual can be added
    if(residual <= Threshold){
        ...
    }

    // Threads launching
    // Initially locked, unlocked when all "end of iteration" messages are received
    omp_init_lock(&lockIter);
    omp_set_lock(&lockIter);
    // Initially locked, unlocked when all "end of iteration" messages are received
    omp_set_lock(&lockIter);
    // Initially locked, unlocked when all "end of iteration" messages are received
    omp_set_lock(&lockIter);
    ...

    // Cleaning of OpenMP locks
    omp_test_lock(&lockStates);
    omp_unset_lock(&lockStates);
    omp_destroy_lock(&lockStates);
    ...
    omp_test_lock(&lockIter);
    omp_unset_lock(&lockIter);
    omp_destroy_lock(&lockIter);
    ...

    // MPI termination
    MPI_Finalize();
}
```

Listing 7.10: Computing function in the synchronized scheme
development methodologies for GPU and cluster of GPUs

```
localCV = 1;
else{
localCV = 0;
}

// Global exchange of local states of the nodes
for(ind=0; ind<nbP; ++ind){
  if(ind != numP){
    MPI_Ssend(&localCV, 1, MPI_CHAR, ind, tagState, MPI_COMM_WORLD);
  }
}

// Waiting for the state messages receptions from the other nodes
omp_set_lock(&lockStates);

// Determination of global convergence (if all nodes are in local CV
if(localCV + nbOtherCVs == nbP){
  // Entering global CV state
  Finished = 1;
  // Unlocking of sending thread to start sendings of end messages
  omp_unset_lock(&lockSend);
  MPI_Ssend(&Finished, 1, MPI_CHAR, numP, tagEnd, MPI_COMM_WORLD);
} else{
  // Resetting of information about the states of the other nodes
  ...
  // Global barrier at the end of each iteration during the process
  for(ind=0; ind<nbP; ++ind){
    if(ind != numP){
      MPI_Ssend(&Finished, 1, MPI_CHAR, ind, tagIter, MPI_COMM_WORLD);
    }
    omp_set_lock(&lockIter);
  }
  // Updating of the iteration number
  iter++;
}
```

Most of the added code is related to the waiting for specific communications. Between lines 6 and 7, the use of the flag SendsInProgress is no longer needed since the sends are performed at each iteration. In line 12, the thread waits for the data receptions from its dependencies. In lines 26-34, the local states are determined and exchanged among all nodes. A new message tag (tagState) is required for identifying those messages. In line 37, the global termination state is determined. When it is reached, lines 38-42 change the Finished boolean to stop the iterative process, and send the end messages. Otherwise each node resets its local state information about the other nodes and a global barrier is done between all the nodes at the end of each iteration with another new tag (tagIter). That barrier is needed to ensure that data messages from successive iterations are actually received during the same iteration on the destination nodes. Nevertheless, it is not useful at the termination of the global process as it is replaced by the global exchange of end messages.

There is no big modification induced by the synchronization in the sending
function. The only change could be the suppression of line 11 that is not useful in this case. Apart from that, the function stays the same as in Listing 7.7.

In the reception function, given in Listing 7.11, there are mainly two insertions (in lines 19-30 and 31-40), corresponding to the additional types of messages to receive. There is also the insertion of three variables that are used for the receptions of the new message types. In lines 24-29 and 34-39 are located messages counting and mutex unlocking mechanisms that are used to block the computing thread at the corresponding steps of its execution. They are similar to the mechanism used for managing the end messages at the end of the entire process. Line 23 directly updates the number of other nodes that are in local convergence by adding the received state of the source node. This is possible due to the encoding that is used to represent the local convergence (1) and the non-convergence (0).

Listing 7.11: Reception function in the synchronized scheme

```c
// Variables declarations and initialization
int nbStateMsg = 0; // Number of local state messages received
int nbIterMsg = 0;  // Number of "end of iteration" messages received
char recvdState;  // Received state from another node (0 or 1)

// Main loop of receptions
while (!Finished) {
    // Waiting for an incoming message
    MPI_Probe(MPI_ANY_SOURCE, MPI_ANY_TAG, MPI_COMM_WORLD, &status);
    if (!Finished) {
        switch (status.MPI_TAG) {
        // Actions related to message type
        case tagCom:  // Management of data messages
            break;
        case tagEnd:  // Management of termination messages
            break;
        case tagState:  // Management of local state messages
            // Actual reception of the message
            MPI_Recv(&recvdState, 1, MPI_CHAR, status.MPI_SOURCE, tagState, MPI_COMM_WORLD, &status);
            // Updates of numbers of stabilized nodes and received state messages
            nbOtherCVs += recvdState;
            nbStateMsg++;
            // Unlocking of the computing thread when states of all other nodes are received
            if (nbStateMsg == nbP - 1) {
                nbStateMsg = 0;
                omp_unset_lock(&lockStates);
            }
            break;
        case tagIter:  // Management of "end of iteration" messages
            // Actual reception of the message in dummy buffer
            MPI_Recv(dummyBuffer, 1, MPI_CHAR, status.MPI_SOURCE, tagIter, MPI_COMM_WORLD, &status);
            nbIterMsg++;
            // Update of the nb of iteration messages
            if (nbIterMsg == nbP - 1) {
                nbIterMsg = 0;
                omp_unset_lock(&lockIter);
            }
            break;
        }
    }
}
```
Now that we can synchronize our asynchronous scheme, the final step is to dynamically alternate the two operating modes in order to regularly check the global convergence of the iterative process. This is detailed in the following paragraph together with the inclusion of GPU computing in the final asynchronous scheme.

7.3.3 Asynchronous scheme using MPI, OpenMP and CUDA

As mentioned above, the strategy proposed to obtain a good compromise between simplicity and efficiency in the asynchronous scheme is to dynamically change the operating mode of the process. A good way to obtain a maximal simplification of the final scheme while preserving good performance is to perform local and global convergence detections only in synchronous mode. Moreover, as two successive iterations are sufficient in synchronous mode to detect local and global convergences, the key is to alternate some asynchronous iterations with two synchronous iterations until convergence.

The last problem is to decide when to switch from the asynchronous to the synchronous mode. Here again, for the sake of simplicity, any asynchronous mechanism for detecting such instant is avoided and we prefer to use a mechanism that is local to each node. Obviously, that local system must rely neither on the number of local iterations done nor on the local convergence. The former would slow down the fastest nodes according to the slowest ones. The latter would provoke too much synchronization because the residuals on all nodes commonly do not evolve in the same way and, in most cases, there is a convergence wave phenomenon throughout the elements. So, a good solution is to insert a local timer mechanism on each node with a given initial duration. Then, that duration may be modified during the execution according to the successive results of the synchronous sections.

Another problem induced by entering synchronous mode from the asynchronous one is the possibility to receive some data messages from previous asynchronous iterations during synchronous iterations. This could lead to deadlocks. In order to avoid this, a wait of the end of previous send is added to the transition between the two modes. This is implemented by replacing the variable SendsInProgress by a mutex lockSendsDone which is unlocked once all the messages have been sent in the sending function. Moreover, it is also necessary to stamp data messages (by the function stampData) with a Boolean indicating whether they have been sent during a synchronous or asynchronous iteration. Then, the lockRec mutex is unlocked only after to
the complete reception of data messages from synchronous iterations. The message ordering of point-to-point communications in MPI together with the barrier at the end of each iteration ensure two important properties of this mechanism. First, data messages from previous asynchronous iterations will be received but not taken into account during synchronous sections. Then, a data message from a synchronous iteration cannot be received in another synchronous iteration. In the asynchronous sections, no additional mechanism is needed as there are no such constraints concerning the data receptions.

Finally, the required modifications of the previous scheme are mainly related to the computing thread. Small additions or modifications are also required in the main process and the other threads.

In the main process, two new variables are added to store respectively the main operating mode of the iterative process (mainMode) and the duration of asynchronous sections (asyncDuration). Those variables are initialized by the programmer. The lockSendsDone mutex is also declared, initialized (locked) and destroyed with the other mutex in this process.

In the computing function, shown in Listing 7.12, the modifications consist of the insertion of the timer mechanism and of the conditions to differentiate the actions to be done in each mode. Some additional variables are also required to store the current operating mode in action during the execution (curMode), the starting time of the current asynchronous section (asyncStart) and the number of successive synchronous iterations done (nbSyncIter).

Listing 7.12: Computing function in the final asynchronous scheme

```
// Variables declarations and initialization
OpMode curMode = SYNC; // Current operating mode (always begin in sync)
double asyncStart; // Starting time of the current async section
int nbSyncIter = 0; // Number of sync iterations done in async mode

// Computation loop
while(!Finished){
  // Determination of the dynamic operating mode
  if(curMode == ASYNC){
    // Entering synchronous mode when asyncDuration is reached
    if(MPIWtime() - asyncStart >= asyncDuration){
      // Waiting for the end of previous sends before starting sync mode
      omp_set_lock(&lockSendsDone);
      curMode = SYNC;
      stampData(dataToSend, SYNC); // Mark data to send with sync flag
      nbSyncIter = 0;
    }
  }
  else{
    // In main async mode, going back to async mode when the max
    // number of sync iterations are done
    if(mainMode == ASYNC){
      nbSyncIter++;
    }
    if(nbSyncIter == 2){
      curMode = ASYNC;
      stampData(dataToSend, ASYNC); // Mark data to send
      asyncStart = MPIWtime(); // Get the async starting time
    }
  }
}
```
In the sending function, the only modification is the replacement in line 11 of the assignment of variable SendsInProgress by the unlocking of lockSendsDone. Finally, in the reception function, the only modification is the insertion before line 19 of Listing 7.8 of the extraction of the stamp from the message and its counting among the receipts only if the stamp is SYNC.

The final step to get our complete scheme using GPU is to insert the GPU management in the computing thread. The first possibility, detailed in Listing 7.13, is to simply replace the CPU kernel (lines 41-43 in Listing 7.12) by a blocking GPU kernel call. This includes data transfers from the node RAM to the GPU RAM, the launching of the GPU kernel, the waiting for kernel completion and the results transfers from GPU RAM to node RAM.

In the sending function, the only modification is the replacement in line 11 of the assignment of variable SendsInProgress by the unlocking of lockSendsDone. Finally, in the reception function, the only modification is the insertion before line 19 of Listing 7.8 of the extraction of the stamp from the message and its counting among the receipts only if the stamp is SYNC.

The final step to get our complete scheme using GPU is to insert the GPU management in the computing thread. The first possibility, detailed in Listing 7.13, is to simply replace the CPU kernel (lines 41-43 in Listing 7.12) by a blocking GPU kernel call. This includes data transfers from the node RAM to the GPU RAM, the launching of the GPU kernel, the waiting for kernel completion and the results transfers from GPU RAM to node RAM.

Listing 7.13: Computing function in the final asynchronous scheme

```c
// Variables declarations and initialization
...  
// CUDA kernel grids
...  
// Computation loop
while (!Finished){
  // Determination of the dynamic operating mode, sendings of data dependencies and blocking data receptions in sync mode
...  
  // Local GPU computation
  // Data transfers from node RAM to GPU
  CHECK_CUDA_SUCCESS(cudaMemcpyToSymbol(dataOnGPU, dataInRAM, inputsSize, 0, cudaMemcpyHostToDevice, cudaMemcpyHostToDevice));
}```
There may be several data transfers: typically A and b in linear problems.

// GPU grid definition
Db.x = BLOCK_SIZE_X;  // BLOCK_SIZE_X are kernel design dependent
Db.y = BLOCK_SIZE_Y;
Db.z = BLOCK_SIZE_Z;

// Use of shared memory (when possible)
cudaFuncSetCacheConfig(gpuKernelName, cudaFuncCachePreferShared);

// Kernel call
gpuKernelName<<<DG,Db>>>(... emph{kernel parameters}@ ...);

// Results transfer from GPU to node RAM
CHECK_CUDA_SUCCESS(cudaMemcpyFromSymbol(resultsInRam, resultsOnGPU, resultsSize, 0, cudaMemcpyDeviceToHost)

// Potential post-treatment of results on the CPU

... // Convergences checking ...

This scheme provides asynchronism through a cluster of GPUs as well as a complete overlap of communications with GPU computations (similarly to Section 7.2). However, the autonomy of GPU devices according to their host can be further exploited in order to perform some computations on the CPU while the GPU kernel is running. The nature of computations that can be done by the CPU may vary depending on the application. For example, when processing data streams (pipelines), pre-processing of next data item and/or post-processing of previous result can be done on the CPU while the GPU is processing the current data item. In other cases, the CPU can perform auxiliary computations that are not absolutely required to obtain the result but that may accelerate the entire iterative process. Another possibility would be to distribute the main computations between the GPU and CPU. However, this usually leads to poor performance increases. This is mainly due to data dependencies that often require additional transfers between CPU and GPU.

So, if we consider that the application enables such overlap of computations, its implementation is straightforward as it consists in inserting the additional CPU computations between lines 23 and 24 in Listing 7.13. Nevertheless, such scheme is fully efficient only if the computation times on both sides are similar.

In some cases, especially with auxiliary computations, another interesting solution is to add a fourth CPU thread to perform them. This suppresses the duration constraint over those optional computations as they are performed in parallel of the main iterative process, without blocking it. Moreover, this scheme stays coherent with current architectures as most nodes include four CPU cores. The algorithmic scheme of such context of complete overlap of CPU/GPU computations and communications is described in Listings 7.14, 7.15 and 7.16, where we suppose that auxiliary computations use...
Development methodologies for GPU and cluster of GPUs

intermediate results of the main computation process from any previous iteration. This may be different according to the application.
Designing Scientific Applications on GPUs

Listing 7.14: Initialization of the main process of complete overlap with asynchronism

```c
// Variables declarations and initialization
...
omp_lock_t lockAux; // Informs main thread about new aux results
omp_lock_t lockRes; // Informs aux thread about new results
omp_lock_t lockWrite; // Controls exclusion of results access
...
auxRes ... ; // Results of auxiliary computations

// Parameters reading, MPI initialization, data initialization and
// distribution

// OpenMP initialization
...
omp_init_lock(&lockAux);
omp_set_lock(&lockAux); // Unlocked when new aux results are
available
omp_init_lock(&lockRes);
omp_set_lock(&lockRes); // Unlocked when new results are available
omp_init_lock(&lockWrite);
omp_unset_lock(&lockWrite); // Controls access to results from threads

#pragma omp parallel
{
 switch (omp_get_thread_num()){
 case COMPUTATION :
 computations(... @\textit{relevant parameters}@ ...);
 break;
 case AUX_COMPS :
 auxComps(... @\textit{relevant parameters}@ ...);
 break;
 case SENDING :
 sendings();
 break;
 case RECEIVING :
 receptions();
 break;
 }
}

// Cleaning of OpenMP locks
...
omp_test_lock(&lockAux);
omp_unset_lock(&lockAux);
omp_destroy_lock(&lockAux);
omp_test_lock(&lockRes);
omp_unset_lock(&lockRes);
omp_destroy_lock(&lockRes);
omp_test_lock(&lockWrite);
omp_unset_lock(&lockWrite);
omp_destroy_lock(&lockWrite);

// MPI termination
MPI_Finalize();
```
Listing 7.15: Computing function in the final asynchronous scheme with CPU/GPU overlap

```c
// Variables declarations and initialization
...

dim3 Dg, Db; // CUDA kernel grids

// Computation loop
while(!Finished){
 // Determination of the dynamic operating mode, sendings of data
 // dependencies and blocking data receptions in sync mode
 ...
 // Local CPU computation
 // Data transfers from node RAM to GPU, GPU grid definition and init
 // of shared mem
 CHECK_CUDA_SUCCESS(cudaMemcpyToSymbol(dataOnGPU, dataInRAM, inputsSize, 0, cudaMemcpyHostToDevice), "Data transfer");
 ...
 // Kernel call
 gpuKernelName<<<Dg,Db>>>(... @\{kernel parameters@} ...);
 // Potential pre/post−treatments in pipeline like computations
 ...
 // Waiting for kernel completion
 cudaDeviceSynchronize();
 // Results transfer from GPU to node RAM
 omp_set_lock(&lockWrite); // Wait for write access to resultsInRam
 CHECK_CUDA_SUCCESS(cudaMemcpyFromSymbol(resultsInRam, resultsOnGPU, resultsSize, 0, cudaMemcpyDeviceToHost), "Results transfer");
 // Potential post−treatments in non−pipeline computations
 omp_unset_lock(&lockWrite); // Give back read access to aux thread
 omp_set_lock(&lockRes);
 omp_unset_lock(&lockRes); // Informs aux thread of new results

 // Auxiliary computations availability checking
 if(omp_test_lock(&lockAux)){
 // Use auxRes to update the iterative process
 ...
 // May induce additional GPU transfers
 }

 // Convergence checking
 if(curMode == SYNC){
 // Local convergence checking and global exchange of local states
 ...
 // Determination of global convergence (all nodes in local CV)
 if(cvLocale == 1 && nbCVLocales == nbP−1){
 // Stop of the iterative process and sending of end messages
 ...
 // Unlocking of aux thread for termination
 omp_unset_lock(&lockRes);
 omp_unset_lock(&lockRes);
 }else{
 // Re−initialization of state information and iteration barrier
 ...
 }
 }
}
```
Listing 7.16: Auxiliary computing function in the final asynchronous scheme with CPU/GPU overlap

```c
// Variables declarations and initialization
... auxInput ... // Local array for input data

// Computation loop
while(!Finished){
 // Data copy from resultsInRam into auxInput
 omp_set_lock(&lockRes); // Waiting for new results from main comps
 if(!Finished){
 omp_set_lock(&lockWrite); // Waiting for access to results
 for(ind=0; ind<resultsSize; ++ind){
 auxInput[ind] = resultsInRam[ind];
 }
 omp_unset_lock(&lockWrite); // Give back write access to main thread
 }
 // Auxiliary computations with possible interruption at the end
 for(ind=0; ind<auxSize && !Finished; ++ind){
 // Computation of auxRes array according to auxInput
 ...
 }
 // Informs main thread that new aux results are available in auxData
 omp_test_lock(&lockAux); // Ensures mutex is locked when unlocking
 omp_unset_lock(&lockAux);
}
```

As can be seen in Listing 7.14, there are three additional mutex (lockAux, lockRes, and lockWrite) that are used respectively to inform the main computation thread that new auxiliary results are available (lines 20-21 in Listing 7.16 and line 29 in Listing 7.15), to inform the auxiliary thread that new results from the main thread are available (lines 25-26 in Listing 7.15 and line 7 in Listing 7.16), and to perform exclusive accesses to the results from those two threads (lines 20, 24 in Listing 7.15 and 9, 13 in Listing 7.16). Also, an additional array (auxRes) is required to store the results of the auxiliary computations as well as a local array for the input of the auxiliary function (auxInput). That last function has the same general organization as the send/receive ones, that is a global loop conditioned by the end of the global process. At each iteration in this function, the thread waits for the availability of new results produced by the main computation thread. This avoids to perform the same computations several times with the same input data. Then, input data of auxiliary computations is copied with a mutual exclusion mechanism. Finally, auxiliary computations are performed. When they are completed, the associated mutex is unlocked to signal the availability of those auxiliary results to the main computing thread. The main thread regularly checks this availability at the end of its iterations and takes them into account whenever this is possible.

Finally, we obtain an algorithmic scheme allowing maximal overlap between CPU and GPU computations as well as communications. It is worth noticing that such scheme is also usable for systems without GPUs but 4-cores nodes.
7.3.4 Experimental validation

As in Section 7.2, we validate the feasibility of our asynchronous scheme with some experiments performed with a representative example of scientific application. It is a three-dimensional version of the advection-diffusion-reaction process that models the evolution of the concentrations of two chemical species in shallow waters. As this process is dynamic in time, the simulation is performed for a given number of consecutive time steps. This implies two nested loops in the iterative process, the outer one for the time steps and the inner one for solving the problem at each time. Full details about this PDE problem can be found in [20]. That two-stage iterative process implies a few adaptations of the general scheme presented above in order to include the outer iterations over the time steps, but the inner iterative process closely follows the same scheme.

We show two series of experiments performed with 16 nodes of the first cluster described in Section 7.2.5. The first one deals with the comparison of synchronous and asynchronous computations. The second one is related to the use of auxiliary computations. In the context of our PDE application, they consist in the update of the Jacobian of the system.

Synchronous and asynchronous computations

The first experiment allows us to check that the asynchronous behavior obtained with our scheme corresponds to the expected one according to its synchronous counterpart. So, we show in Figure 7.6 the computation times of our test application in both modes for different problem sizes. The size shown is the number of discrete spatial elements on each side of the cube representing the 3D volume. Moreover, for each of these elements, there are the concentrations of the two chemical species considered. So, for example, size 30 corresponds in fact to $30 \times 30 \times 30 \times 2$ values.

The results obtained show that the asynchronous version is sensibly faster than the synchronous one for smaller problem sizes, then it becomes similar or even a bit slower for larger problem sizes. A closer comparison of computation and communication times in each execution confirms that this behavior is consistent. The asynchronous version is interesting if communication time is similar or larger than computation time. In our example, this is the case up to a problem size between 50 and 60. Then, computations become longer than communications. Since asynchronous computations often require more iterations to converge, the gain obtained on the communication side becomes smaller than the overhead generated on the computation side, and the asynchronous version takes longer.

Overlap of auxiliary computations

In this experiment, we use only the asynchronous version of the application. In the context of our test application, we have an iterative PDE solver based on
Newton resolution. Such solvers are written under the form $x = T(x)$, $x \in \mathbb{R}^n$ where $T(x) = x - F'(x)^{-1}F(x)$ and $F'$ is the Jacobian of the system. In such cases, it is necessary to compute the vector $\Delta x$ in $F' \times \Delta x = -F$ to update $x$ with $\Delta x$. There are two levels of iterations, the inner level to get a stabilized version of $x$, and the outer level to compute $x$ at the successive time steps in the simulation process. In this context, classical algorithms either compute $F'$ only at the first iteration of each time step or at some iterations but not all because the computation of $F'$ is done in the main iterative process and it has a relatively high computing cost.

However, with the scheme presented above, it is possible to continuously compute new versions of $F'$ in parallel to the main iterative process without penalizing it. Hence, $F'$ is updated as often as possible and taken into account in the main computations when it is relevant. So, the Newton process should be accelerated a little bit.

We compare the performance obtained with overlapped Jacobian updatings and non-overlapped ones for several problem sizes, see Figure 7.7.

The overlap is clearly efficient as the computation times with overlapping Jacobian updatings are much better than without overlap. Moreover, the ratio between the two versions tend to increase with the problem size, which is as expected. Also, we have tested the application without auxiliary computations at all, that is, the Jacobian is computed only once at the beginning of each time step of the simulation. The results for this last version are quite similar to the overlapped auxiliary computations, and even better for small problem sizes. The fact that no sensible gain can be seen on this range of problem sizes is due to the limited number of Jacobian updates taken into account in the main computation. This happens when the Jacobian update is as long
FIGURE 7.7: Computation times with or without overlap of Jacobian updatings in asynchronous mode.

as several iterations of the main process. So, the benefit is reduced in this particular case.

Those results show two things; first, auxiliary computations do not induce great overhead in the whole process. Second, for this particular application the choice of updating the Jacobian matrix as auxiliary computations does not speed up the iterative process. This does not question the parallel scheme in itself but merely points out the difficulty to identify relevant auxiliary computations. Indeed, this identification depends on the considered application and requires a profound specialized analysis.

Another interesting choice could be the computation of load estimation for dynamic load balancing, especially in decentralized diffusion strategies where loads are transferred between neighboring nodes [8]. In such case, the load evaluation and the comparison with other nodes can be done in parallel of the main computations without perturbing them.
7.4 Perspective: A unifying programming model

In the previous sections we have seen that controlling a distributed GPU application when using tools that are commonly available is a quite challenging task. To summarize, such an application has components that can be roughly classified as:

**CPU:** CPU bound computations, realized as procedures in the chosen programming language

**CUDA\text{\texttt{ker}}:** GPU bound computations, in our context realized as CUDA compute kernels

**CUDA\text{\texttt{trans}}:** data transfer between CPU and GPU, realized with CUDA function calls

**MPI:** distributed data transfer routines, realized with MPI communication primitives

**OpenMP:** inter-thread control, realized with OpenMP synchronization tools such as mutexes

**CUDA\text{\texttt{sync}}:** synchronization of the GPU, realized with CUDA functions

Among these, the last (CUDA\text{\texttt{sync}}) is not strictly necessary on modern systems, but still recommended to obtain optimal performance. With or without that last step, such an application is highly complex: it is difficult to design or to maintain, and depends on a lot of different software components. The goal of this section is to present a new path of development that allows to replace the last three or four types of components that control the application (MPI, OpenMP, CUDA\text{\texttt{sync}} and eventually CUDA\text{\texttt{trans}}) by a single tool: **Ordered Read-Write Locks**, ORWL, see [10, 13]. Besides the simplification of the algorithmic scheme that we already have mentioned, the ongoing implementation of ORWL allows to use a feature of modern platforms that can improve the performance of CPU bound computations: lock-free atomic operations to update shared data consistently. For these, ORWL relies on new interfaces that are available with the latest revision of the ISO standard for the C programming language, see [16].

### 7.4.1 Resources

ORWL places all its concepts that concern data and control around a single abstraction: **resources**. An ORWL resource may correspond to a local or remote entity and is identified through a **location**, that is a unique identification through which it can be accessed from all different components of the same application. In fact, resources and locations (entities and their names so to speak) are mostly identified by ORWL and these words will be used interchangeably.
Resources may be of very different kind:

**Data** resources are entities that represents data and not specific memory buffers or locations. During the execution of an application it can be mapped repeatedly into the address space and in effect be represented at different addresses. Data resources can be made accessible uniformly in all parts of the application, provided that the locking protocol is observed, see below. Data resources can have different persistence:

**RAM** data resources are typically temporary data that serve only during a single run of the application. They must be initialized at the beginning of their lifetime and the contents is lost at the end.

**File** data resources are persistent and linked to a file in the file system of the platform.

**Collective** data resources are data to which all tasks of an application contribute (see below). Examples for such resources are broadcast, gather or reduce resources, e.g to distribute initial data or to collect the result of a distributed computation.

Other types of data resources could be easily implemented with ORWL, e.g web resources (through a ftp, http or whatever server address) or fixed hardware addresses.

**Device** resources represent hardware entities of the platform. ORWL can then be used to regulate the access to such device resources. In our context the most important such resource is the GPU, but we could easily use it to represent a CPU core, a camera or other peripheral device.

Listing 7.17 shows an example of a declaration of four resources per task. Two (curBlock and nextBlock) are intended to represent the data in a block-cyclic parallel matrix multiplication (see p. 120), GPU represents a GPU device and result will represent a collective “gather” resource among all the tasks.

```
Listing 7.17: Declaration of ORWL resources for a block-cyclic matrix multiplication

#include "orwl.h"

ORWL_LOCATIONS_PER_TASK(curBlock, nextBlock, GPU, result);
ORWL_DATA_LOCATION(curBlock);
ORWL_DATA_LOCATION(nextBlock);
ORWL_DEVICE_LOCATION(GPU);
ORWL_GATHER_LOCATION(result);
```

### 7.4.2 Control

ORWL regulates access to all its resources, no “random access” to a resource is possible. It doesn’t even have a user-visible data type for resources.
Designing Scientific Applications on GPUs

- All access is provided through handles. Similar to pointers or links, these only refer to a resource and help to manipulate it. Usually several handles to the same resource exist, even inside the same OS process or thread, or in the same application task.

- The access is locked with RW semantics, where R stands for concurrent Read access, and W for exclusive Write access. This feature replaces the control aspect of MPI communications, OpenMP inter-thread control and CUDA sync.

- This access is Ordered (or serialized) through a FIFO, one FIFO per resource. This helps to run the different tasks of an application in a controlled order and to always have all resources in a known state. This aspect largely replaces and extends the ordering of tasks that MPI typically achieves through the passing of messages.

- The access is transparently managed for remote or local resources. Communication, if necessary, is done asynchronously behind the scenes. This replaces the explicit handling of buffers and messages with MPI.

7.4.3 Example: block-cyclic matrix multiplication (MM)

Let us now have a look how a block-cyclic matrix multiplication algorithm can be implemented with these concepts (Listing 7.18). Inside the loop it mainly consists of three different operations, of which the first two can be run concurrently, and the third must be done after the other two.

Listing 7.18: Block-cyclic matrix multiplication, high level per task view

```c
typedef double MBlock[N][N];
MBlock A;
MBlock B[k];
MBlock C[k];

<do some initialization>
for (size_t i = 0; i < k; ++i) {
 MBlock next;
 parallel-do {
 operation 1: <copy the matrix A of the left neighbor into next>;
 operation 2: {
 <copy the local matrix A to the GPU>;
 <on GPU perform C[i] = A * B[0] + ... + A * B[k-1]>;
 }
 }
 operation 3: {
 <wait until the right neighbor has read our block>
 A = next;
 }
}<collect the result matrix C consisting of all C blocks>
```

Listing 7.19 shows the local copy operation 3 as it could be realized with ORWL. It uses two resource handles nextRead and curWrite and marks
nested *critical sections* for these handles. Inside the nested sections it obtains pointers to the resource data; the resource is *mapped* into the address space of the program, and then a standard call to `memcpy` achieves the operation itself. The operation is integrated in its own for-loop, such that it could run independently in an OS thread by its own.

**Listing 7.19: An iterative local copy operation**

```c
for (size_t i = 0; i < k; ++i) {
 ORWL_SECTION(nextRead) {
 MBlock const* sBlock = orwl_read_map(nextRead);
 ORWL_SECTION(curWrite) {
 MBlock* tBlock = orwl_write_map(curWrite);
 memcpy(tBlock, sBlock, sizeof* tBlock);
 }
 }
}
```

Next, in Listing 7.20 we copy data from a remote task to a local task. Substantially the operation is the same, only that in the example different handles (`remRead` and `nextWrite`) are used to represent the respective resources.

**Listing 7.20: An iterative remote copy operation as part of a block cyclic matrix multiplication task**

```c
for (size_t i = 0; i < k; ++i) {
 ORWL_SECTION(remRead) {
 MBlock const* sBlock = orwl_read_map(remRead);
 ORWLSECTION(nextWrite) {
 MBlock* tBlock = orwl_write_map(nextWrite);
 memcpy(tBlock, sBlock, sizeof* tBlock);
 }
 }
}
```

Now let us have a look into the operation that probably interests us the most, the interaction with the GPU in Listing 7.21. Again there is much structural resemblance to the copy operations from above, only that we transfer the data to the GPU in the innermost block and then run the GPU MM kernel while we still are inside the critical section for the GPU.

**Listing 7.21: An iterative GPU transfer and compute operation as part of a block cyclic matrix multiplication task**

```c
for (size_t i = 0; i < k; ++i) {
 ORWL_SECTION(GPUhandle) {
 ORWL_SECTION(curRead) {
 MBlock const* sBlock = orwl_read_map(curRead);
 transferToGPU(sBlock, i);
 }
 runMMonGPU(i);
 }
}
```

Now that we have seen how the actual procedural access to the resources is regulated we will show how the association between handles and resources is specified. E.g in our application of block-cyclic MM the `curRead` handle should correspond to current matrix block of the corresponding task, whereas
remRead should point to the current block of the neighboring task. Both read operations on these matrix blocks can be effected without creating conflicts, so we would like to express that fact in our resource specification. From a point of view of the resource “current block” of a particular task, this means that it can have two simultaneous readers, the task itself performing the transfer to the GPU, and the neighboring task transferring the data to its “next block”.

Listing 7.22 first shows the local dynamic declarations of our application; it declares a block type for the matrix blocks, a result data for the collective resource, and the six handles that we have seen so far.

Listing 7.22: Dynamic declaration of handles to represent the resources

```c
typedef double MBlock [N][N];
ORWL_DECLARE(MBlock, result);
```

With these declarations, we didn’t yet tell ORWL much about the resources to which these handles refer, nor the type (read or write) or the priority (FIFO position) of the access. This is done in code Listing 7.23. The handles for Listing 7.21 are given first, GPUhandle will be accessed exclusively (therefore the write) and, as said, curRead is used shared (so a read). Both are inserted in the FIFO of there respective resources with highest priority, specified by the 0s in the third function parameter. The resources to which they correspond are specified through calls to the macro ORWL_LOCATION, indicating the task (orwl_mytid is the ID of the current task) and the specific resource of that task, here GPU and curBlock.

Likewise, a second block of insertions concerns the handles for Listing 7.20: newWrite reclaims an exclusive access and remRead a shared. remRead corresponds to a resource of another task; previous(orwl_mytid) is supposed to return the ID of the previous task in the cycle. Both accesses can be effected concurrently with the previous operation, so we insert with the same priority 0 as before.

Then, for the specification of the third operation (Listing 7.19) we need to use a different priority; the copy operation from nextBlock to curBlock has to be performed after the other operations have terminated.

As a final step, we then tell ORWL that the specification of all accesses is complete and that it may schedule all these accesses in the respective FIFOs of the resources.

Listing 7.23: Dynamic initialization of access mode and priorities

```c
orwl_handle2 remRead = ORWL_HANDLE2_INITIALIZER;
orwl_handle2 nextWrite = ORWL_HANDLE2_INITIALIZER;
orwl_handle2 nextRead = ORWL_HANDLE2_INITIALIZER;
orwl_handle2 curWrite = ORWL_HANDLE2_INITIALIZER;
orwl_handle2 curRead = ORWL_HANDLE2_INITIALIZER;
orwl_handle2 GPUhandle = ORWL_HANDLE2_INITIALIZER;
```
7.4.4 Tasks and operations

With that example we have now seen that ORWL distinguishes tasks and operations. An ORWL program is divided into tasks that can be seen as the algorithmic units that will concurrently access the resources that the program uses. A task for ORWL is characterized by

- a fixed set of resources that it manages, “owns”, in our example the four resources that are declared in Listing 7.17.
- a larger set of resources that it accesses, in our example all resources that are used in Listing 7.23.
- a set of operations that act on these resources, in our example the three operations that are used in Listing 7.18, and that are elaborated in Listings 7.19, 7.20 and 7.21.

Each ORWL operation is characterized by

- one resource, usually one that is owned by the enclosing task, that it accesses exclusively. In our example, operation 1 has exclusive access to the next block, operation 2 has exclusive access the GPU resource, and operation 3 to the A block.
- several resources that are accessed concurrently with others.

In fact each ORWL operation can be viewed as a compute-and-update procedure of a particular resource with knowledge of another set of resources.
7.5 Conclusion

In this chapter, different methodologies that effectively take advantage of current cluster technologies with GPUs have been presented. Beyond the simple collaboration of several nodes that include GPUs, we have addressed parallel schemes to efficiently overlap communications with computations (including GPU transfers), and also computations on the CPU with computations on the GPU. Moreover, parallel schemes for synchronous as well as asynchronous iterative processes have been proposed. The proposed schemes have been validated experimentally and provide the expected behavior. Finally, as a prospect we have developed a programming tool that will, in middle or long term, provide all the required technical elements to implement the proposed schemes in a single tool, without requiring several external libraries.

We conclude that GPU computations are very well suited to achieve overlap with CPU computations and communications and they can be fully integrated in algorithmic schemes combining several levels of parallelism.

7.6 Glossary

AIAC: Asynchronous Iterations - Asynchronous Communications.

Asynchronous iterations: Iterative process where each element is updated without waiting for the last updates of the other elements.

Auxiliary computations: Optional computations performed in parallel to the main computations and used to complete them or speed them up.

BSP parallel scheme: Bulk Synchronous Parallel, a parallel model that uses a repeated pattern (superstep) composed of: computation, communication, barrier.

GPU stream: Serialized data transfers and computations performed on a same piece of data.

Message loss/miss: Can be said about a message that is either not sent or sent but not received (possible with unreliable communication protocols).

Message stamping: Inclusion of a specific value in messages of the same tag to distinguish them (kind of secondary tag).

ORWL: Ordered Read Write Locks, a programming tool proposing a unified programming model.
**Page-locked data:** Data that are locked in cache memory to ensure fast accesses.

**Residual:** Difference between results of consecutive iterations in an iterative process.

**Streamed GPU sequence:** GPU transfers and computations performed simultaneously via distinct GPU streams.

---

**Bibliography**


Designing Scientific Applications on GPUs


page-locked data, 116
parallel evaluation of bounds, 160
Parallel reduction, 229
parallel tree exploration, 160
parareal, 92, 285
PAV algorithm, 305
PDE example, 141
Performance model, 238
Petrov-Galerkin condition, 319
Poisson equation, 86
POSIX threads, 390
potential flow, 257
power converters, 399
power electronics, 400
precision, 280
double precision, 376, 377, 381–385, 393, 396
mixed, 280
single precision, 376, 377, 381–384, 396
preconditioning, 87, 91, 269
left-preconditioning, 269
Prefetching, 62, 66
prefetching, 26, 36
PRNG, 447
real-time simulation, 288
reduction operation, 16
register count, 35, 37, 39
Relative gain, 329, 351
relaxation, 267
zone, 268
residual, 126
sensitive dependence on initial conditions, 450
sensitivity matrix, 400, 403, 408
simplex
revised method, 221
standard method, 220
software library, 74
Sparse linear system, 316, 323
Preconditioned, 317, 318, 320
SPICE, 400, 406, 410
spline, 297
SpMV multiplication, 323, 324
stability, 265
stencil, 79, 263
switching frequency, 400
Synchronous, 340, 345, 349, 356
TDP (Thermal Design Power), 391
templates, 76
termination, 124
TestU01, 448
thread index, 14
Thread divergence, 166
time integration, 82, 265
topological transitivity, 449
topology, 91
transient analysis, 402
truncation error, 402
type definitions, 85
wrapper, 386