« Big Data » course
CentraleDigitalLab@LaPlateforme - 2023-2024

Lab -2: Advanced distributed programming with Spark

Gianluca Quercini & Stéphane Vialle

In this lab you’ll execute Spark programs on the distributed environment of a Spark-HDFS cluster at
CentraleSupélec's Teaching Data Center. For details of the implementation and access to distributed
files, see part 1 of lab 1.

Exercise 1: Finding common friends in a social network.

We consider a social network graph encoded in a text file.

e One line of the file is a list of identifiers separated by a comma: A, B, C, D
This means that A is friend with B, C et D.

e The set of lines in the file describes the relation “is friend with” in the graph. Ex :

A, B,C,D
B,A, D
C,AD
D,A,B,C

e We assume that the relations are symmetrical: if we have A, B, then we also have B, A.
We’d like to obtain the list of common friends of any two individuals, as a key-value RDD:

(A, B), [D])
(A, C), [D])
(A, D), [B, C])
((8, C), [A, D])
(8, D), [A])
((C, D), [A])

Note: each pair should appear at most once in the output (as shown above). If we list the common
friends of the pair (A, B), then we won’t list the common friends of (B, A).

We use the following files under the HDFS folder hdfs://sar01:9000/data/social-network/:

sn_tiny.csv :Small social network, used for testing.

sn_10k_100k.csv
sn_100k_100k.csv
sn_1k 100k.csv
sn_1Im_1m.csv

:Social network with roughly 10* individuals and 10° links.
:Social network with roughly 10° individuals and 10° links.
:Social network with roughly 10% individuals and 10° links.
:Social network with roughly 10° individus et 10° liens environ.



Questions 3.1 : conception of a solution

Copy the following template to your home directory:

~vialle/DCE-Spark/template_common friends.py

Propose a solution using a reduceByKey(...)

Propose a solution using a groupByKey()

Test and validate your implementations on file sn_tiny.csv.

Question 3.2 : tests and performances

Execute your implementations on the other test files and note down the execution times.

Note all your measures in the following table.

Input file

sn_tiny

sn_10k_100k

sn_100k_100k

sn_1k_100k

sn_1m_1m

File size (MB)

groupByKey (s)

reduceByKey (s)

Avg nb of
friends (Q 3.3)

Nb of
intermediate
pairs (Q 3.4)

Question 3.3: computing the minimum, maximum and average degree of the graph nodes.
Write a Spark program that computes the minimum, maximum and average node degree in the social
network graph (the degree of a node is the number of its friends).

Note: keep using a RDD until the very end of the computation and compute the minimum,
maximum and average values in the RDD (don’t leave the RDD to compute the values on
Python lists, which would make your code not parallelizable).

Note: the average degree must be a floating-point number.

Execute your program on the four test files to compute the minimum, maximum and average

number of friends of an individual.

Input file

sn_tiny

sn_10k_100k

sn_100k_100k

sn_1k_100k

sn_1m_1m

Min nb of friends

Max nb of friends

Avg nb of friends

Complete the table in question 3.2 with the average number of friends of a node.




Question 3.4 : performance analysis

® As we have seen in the tutorial, we suppose that the number of friends of each node is equal
to the average number of friends.

e Compute the intermediate pairs ((A, B), X) generated before the wide operation (groupByKey
or reduceByKey) by your program that computes common friends.

Justify your calculation.
e Complete the table in question 3.2 with the number of generated intermediate pairs.
o Analyse the obtained performances:

O Plot the execution time (1) as a function of the file sizes, then (2) as a function of the
average number of friends, then (3) as a function of the number of the generated
intermediate pairs.

You're free to choose either linear, logarithmic, or semi-logarithmic scales.
o0 Which plot better explains the evolution of the execution time of the solution using
reduceByKey ?

O What about the solution using groupByKey?

e Is the number of intermediate pairs a good predictor of the program workload and execution
time?



