« Big Data » course - CentraleDigitalLab@LaPlateforme — 2023-2024

Tutorial 1: Basic Map-Reduce algorithms in Spark
Stéphane Vialle & Gianluca Quercini

Exercise 1: Calculating averages on data series

Question 1.1: processing of small data sets

Consider a CSV file containing "Year, Month, Temperature" measurements, with only one temperature
measured per month (so theoretically 12 measurements per year...).

We would like to generate pairs (Year, TemperatureAverage) using a Map-Reduce approach in Spark.

e Describe a Map-Reduce approach that solves the problem, without enriching the data during

the process (manipulate only years and temperatures).

e Propose a Spark implementation by completing the following code:

#map-reduce computation ------------—----"-"---—-—————————— -

def avg temperature (theTextFile) :
avg = theTextFile \
.map (lambda line: line.split(",")) \
e e # nb of line is not limited - TO DO
return avg

#$main code -------—-—-— -
Input_hdfs_file name = ... #details in the real python source file
Output_hdfs file name = ... #details in the real python source file

sc = SparkContext ()

input_text file = sc.textFile (input hdfs file name)
results = avg_temperature (input_text file)
results.saveAsTextFile (output hdfs file name)

Does your Spark code maintain RDDs until the last step?
Does your Spark code contain Narrow or Wide operations?
What are the shortcomings of this algorithm?

We now assume that there is only one key (all temperatures were collected in the same year).

o Let Ns be the number of Spark executors, Nt the total number of temperatures read.
What will happen if the amount of data increases?

o Estimate the volume of data injected into the network during the shuffle.

Question 1.2: processing large data series

We now consider a large CSV file (stored taking full advantage of a distributed HDFS file system),
containing "Year, Month, Day, Hour, Minute, Second, Temperature" measurements. In some years,
there may be as many as one measurement per second.

As before, we want to generate pairs (Year, TemperatureAverage) using a Map-Reduce approach in
Spark.

e How many measurements can there be in one year at most?
Can we continue with the algorithmic approach of question 1?

e Propose an approach better suited to these large datasets, and a Spark implementation.

e Does your Spark code maintain RDDs? Does it favor Narrow operations? Which operations
modify data partitioning?

Exercise 2: Calculating averages and standard deviations on large data series

We start again from question 2 of exercise 1, and our "Year, Month, Day, Minute, Second,
Temperature" measurements in a large CSV file.

But now we want to obtain triplets of values: (Year, MeanTemperature, StandardDeviation).

We can express the standard deviation of N values x; (with: 0 < i < N) according to two equivalent
definitions:

N1 —%)2

e Definition 1 (classic definition): o = N

e Definition2: 0 = Vx2 — ¥2 =
N N

G N (zéz’ov—lxi>
Question 2.1: choosing a mathematical expression

Which expression of the standard deviation do you find most exploitable in a Map-Reduce approach
and a Spark implementation (and why)?

Question 2.2: Spark algorithm and implementation

Propose a Map-Reduce approach and Spark code to solve the problem for large datasets.

