
Big Data
Lecture 2 – From SQL to NoSQL: Spark SQL and

NoSQL databases

Gianluca Quercini

gianluca.quercini@centralesupelec.fr

Centrale DigitalLab, 2022

mailto:gianluca.quercini@centralesupelec.fr

From SQL to NoSQL Towards NoSQL

Towards NoSQL

What we’ve seen so far

Hadoop and Spark as distributed data processing frameworks.

Data from text files stored in a distributed file system (HDFS).

What we’re going to see

Data can be stored and managed by database systems.

As opposed to a file system, a database provides:

Data model and query language.
Indexing and integrity constraints.
Fine-grained security mechanisms.
Concurrency control.
Backup and recovery.

The most popular database systems are based on the relational data
model (Source).

S. Vialle, G. Quercini Big Data Centrale DigitalLab, 2022 1 / 74

https://db-engines.com/en/ranking

From SQL to NoSQL Towards NoSQL

The relational data model

+ In the relational model, a database is a collection of tables, or
relations.

A row in a table (or, a tuple in a relation) describes an entity.

A column in a table (or, an element in a tuple) represents an
attribute of an entity.

A relationship between two entities is expressed as common values in
one or more columns of their respective tables.

The relational model provides an open-ended collection of scalar
types (e.g., boolean, integer . . .).

Open-ended: users are allowed to define custom types.

+ The values in a given column must have the same type.

S. Vialle, G. Quercini Big Data Centrale DigitalLab, 2022 2 / 74

From SQL to NoSQL Towards NoSQL

Relational data model limitations: impedance mismatch

Definition (Impedance mismatch)

Impedance mismatch refers to the challenges encountered when one needs to map
objects used in an application to tables stored in a relational database.

Application

Book
isbn
title

Publisher
name
country

author

first_name
last_name
country

Mapping

Relational
database

Book

isbn
title
publisher_id

Publisher

publisher_id
name
country

Author

author_id
first_name
last_name
country

Book_author

author_id
isbn

objects

tables

S. Vialle, G. Quercini Big Data Centrale DigitalLab, 2022 3 / 74

From SQL to NoSQL Towards NoSQL

Impedance mismatch: solutions

Object-oriented databases

Data is stored as objects.

Object-oriented applications save their objects as they are.

Examples. ConceptBase, Db4o, Objectivity/DB.

Disadvantage

Not as popular as relational database systems.

Requires familiarity with object-oriented concepts.

No standard query language.

S. Vialle, G. Quercini Big Data Centrale DigitalLab, 2022 4 / 74

From SQL to NoSQL Towards NoSQL

Impedance mismatch: solutions

Object relational mappers (ORM)

Use of libraries that map objects to relational tables.

The application manipulates objects.

The ORM library translates object operations into SQL queries.

Examples. SQLAlchemy, Hibernate, Sequelize.

Disadvantage

Abstraction. Weak control on how queries are translated.

Portability. Each ORM has a different set of APIs.

S. Vialle, G. Quercini Big Data Centrale DigitalLab, 2022 5 / 74

From SQL to NoSQL Towards NoSQL

Limitations of the relational model: graph data

Normalization

In a relational databases, tables are normalized.

Data on different entities are kept in different tables.

This reduces redundancy and guarantees integrity.

In a normalized relational database, links between entities are
expressed with foreign key constraints.

Need to join different tables (expensive operation).

Book

isbn
title
publisher_id

Author

author_id
first_name
last_name
country

Book_author

author_id
isbnjoin join

S. Vialle, G. Quercini Big Data Centrale DigitalLab, 2022 6 / 74

From SQL to NoSQL Towards NoSQL

Limitations of the relational model: data distribution

Objective of a relational database system

Privilege data integrity and consistency.

Different mechanisms to ensure integrity and consistency.

Primary and foreign key constraints.
Transactions.

Mechanisms to enforce data integrity and consistency have a cost.

Manage transactions.
Check that new data complies with the given integrity constraints.

Things get worse in distributed databases.

Data is distributed across several machines.
Join operations become very expensive.
Integrity mechanisms become very expensive.

S. Vialle, G. Quercini Big Data Centrale DigitalLab, 2022 7 / 74

From SQL to NoSQL Data distribution

Distributed database

Definition (Distributed database)

A distributed database is one where data is stored across several
machines, a.k.a, nodes.

Shared-nothing architecture

Each node has its own CPU, memory and storage.

Nodes only share the network connection.

Pros/cons of a distributed database

Allows storage and management of large volumes of data. ,

Far more complex than a single-server database. /

S. Vialle, G. Quercini Big Data Centrale DigitalLab, 2022 8 / 74

From SQL to NoSQL Data distribution

Distributed database
13-4 Part IV • Advanced Database Topics

• All users access the database through one global schema or database
FGƂPKVKQP�

• The global schema is simply the union of all the local database schemas.

It is difficult in most organizations to force a homogeneous environment, yet
heterogeneous environments are much more difficult to manage.

As listed previously, there are many variations of heterogeneous distributed
database environments. In the remainder of the chapter, however, a heterogeneous
environment will be defined by the following characteristics (as depicted in
Figure 13-3):

• Data are distributed across all the nodes.
• Different DBMSs may be used at each node.
• Some users require only local access to databases, which can be accomplished

by using only the local DBMS and schema.
• A global schema exists, which allows local users to access remote data.

In addition, it is important to note that different variants of cloud-based
databases (discussed in Chapter 8) are often implemented in a distributed way.
The cloud service providers use a variety of approaches to achieve the benefits
of a distributed database architecture. These features are, however, typically
hidden from most users and developers. Commitments regarding the geographic
distribution of data might become part of a service level agreement between the
customer and a service provider. These details are, however, beyond the scope of
this book.

Objectives and Trade-Offs

A major objective of distributed databases is to provide ease of access to data for users
at many different locations. To meet this objective, the distributed database system must
provide location transparency, which means that a user (or user program) using data
for querying or updating need not know the location of the data. Any request to retrieve
or update data from any site is automatically forwarded by the system to the site or
sites related to the processing request. Ideally, the user is unaware of the distribution of
data, and all data in the network appear as a single logical database stored at one site.
In this ideal case, a single query can join data from tables in multiple sites as if the data
were all in one site.

Location transparency

A design goal for a distributed
database, which says that a user (or
user program) using data need not
know the location of the data.

Local User

Global User

DBMS-3DBMS-2 •••

Local User

DBMS-1 DBMS-n

Distributed
DBMS

Global
Schema

FIGURE 13-3 Heterogeneous
distributed database
environment

Source: Based on Bell and
Grimson (1992)

M13_HOFF3650_13_SE_C13WEB.indd 4 23/11/17 3:33 PM

S. Vialle, G. Quercini Big Data Centrale DigitalLab, 2022 9 / 74

Click here

https://www.pearson.com/us/higher-education/product/Hoffer-Modern-Database-Management-10th-Edition/9780136088394.html

From SQL to NoSQL Data distribution

Distributing data: when?

Small-scale data

Data distribution is not a good option when the data scale is small.

With small-scale data, the performances of a distributed database
are worse than a single-server database.

Overhead. We lose more time distributing and managing data than
retrieving it.

Large-scale data

If the data does not fit in a single machine, data distribution is the
only option left.

Distributed databases allow more concurrent database requests
than single-server databases.

S. Vialle, G. Quercini Big Data Centrale DigitalLab, 2022 10 / 74

From SQL to NoSQL Data distribution

Distributing data: how?

Data distribution options

Replication. Multiple copies of the same data stored on different
nodes.

Sharding. Data partitions stored on different nodes.

Hybrid. Replication + Sharding.

Properties

Location transparency: applications do not have to be aware of the
location of the data.

Replication transparency: applications do not need to be aware
that the data is replicated.

S. Vialle, G. Quercini Big Data Centrale DigitalLab, 2022 11 / 74

From SQL to NoSQL Data distribution

Replication

The same piece of data is replicated across different nodes.

Each copy is called a replica.

Replication factor. The number of nodes on which the data is
replicated.

A

codeD nameD budget

14 Administration 300,000

25 Education 150,000

62 Finance 600,000

45 Human
Resources 150,000

Department

B C

codeD nameD budget

14 Administration 300,000

25 Education 150,000

62 Finance 600,000

45 Human
Resources 150,000

Department

codeD nameD budget

14 Administration 300,000

25 Education 150,000

62 Finance 600,000

45 Human
Resources 150,000

Department

S. Vialle, G. Quercini Big Data Centrale DigitalLab, 2022 12 / 74

From SQL to NoSQL Data distribution

Replication

Advantages

Scalability. Multiple nodes can serve queries on the same data.

Latency. Queries can be served by geographically proximate nodes.

Fault tolerance. The database keeps serving queries even if some
nodes fail.

Disadvantages

Storage cost. Storage is used to keep multiple copies of the same
data.

Consistency. All replicas must be kept in sync.

S. Vialle, G. Quercini Big Data Centrale DigitalLab, 2022 13 / 74

From SQL to NoSQL Data distribution

Replication

Replica consistency

When a replica is updated, the other replicas must be updated as well.

A

codeD nameD budget

14 Administration 500,000

25 Education 150,000

62 Finance 600,000

45 Human
Resources 150,000

Department

B C

codeD nameD budget

14 Administration 300,000

25 Education 150,000

62 Finance 600,000

45 Human
Resources 150,000

Department

codeD nameD budget

14 Administration 300,000

25 Education 150,000

62 Finance 600,000

45 Human
Resources 150,000

Department

UPDATE Department
SET budget=500000
WHERE codeD=14

Propagate
update

Propagate
update

S. Vialle, G. Quercini Big Data Centrale DigitalLab, 2022 14 / 74

From SQL to NoSQL Data distribution

Replication

Synchronous updates

Updates are propagated immediately to the other replicas.

Small inconsistency window. The replicas will be inconsistent for a
short interval of time. ,

If updates are frequent, the database might be too busy propagating
updates than serving queries. /

Asynchronous updates

Updates are propagated at regular intervals.

More efficient when updates are frequent. ,

Long inconsistency window. /

S. Vialle, G. Quercini Big Data Centrale DigitalLab, 2022 15 / 74

From SQL to NoSQL Data distribution

Replication

Master-slave replication

Write operations are only possible on the master node.

The master node propagates the updates to the slave nodes.

Read operations are served by both the master and the slave nodes.

masterslave slave

write readread read

write write

S. Vialle, G. Quercini Big Data Centrale DigitalLab, 2022 16 / 74

From SQL to NoSQL Data distribution

Replication

Master-slave replication

Prevents write conflicts. ,
Only one replica is written at any given time.

Single point of failure. /
If the master fails, write operations are unavailable.
Algorithms exist to elect a new master.

Read conflicts are possible. /

masterslave slave

write readread read

write write

S. Vialle, G. Quercini Big Data Centrale DigitalLab, 2022 17 / 74

From SQL to NoSQL Data distribution

Replication

Master-slave replication read conflict

Two read operations on the same data might return different values.

masterslave slave

write readread read

write write

codeD nameD budget

14 Administration 300,000

25 Education 150,000

62 Finance 600,000

45 Human
Resources 150,000

Department

codeD nameD budget

14 Administration 500,000

25 Education 150,000

62 Finance 600,000

45 Human
Resources 150,000

Department

codeD nameD budget

14 Administration 500,000

25 Education 150,000

62 Finance 600,000

45 Human
Resources 150,000

Department

Write: update (Department, budget=500,000) Read: select (Department, budget)

1

300,000

22 4

3 3

500,000 500,000

S. Vialle, G. Quercini Big Data Centrale DigitalLab, 2022 18 / 74

From SQL to NoSQL Data distribution

Replication

Peer-to-peer replication

Read and write operations are possible on any node.

A

C B

write read

write

write read write read

write

write

S. Vialle, G. Quercini Big Data Centrale DigitalLab, 2022 19 / 74

From SQL to NoSQL Data distribution

Replication

Peer-to-peer replication

No single point of failure. ,

Write and read conflicts are possible. /

A

C B

write read

write

write read write read

write

write

S. Vialle, G. Quercini Big Data Centrale DigitalLab, 2022 20 / 74

From SQL to NoSQL Data distribution

Sharding

Sharding

Data is partitioned into balanced, non-overlapping shards.

Shards are distributed across the nodes.

A
codeD nameD budget

14 Administration 300,000

25 Education 150,000

Department

B
codeD nameD budget

62 Finance 600,000

45 Human
Resources 150,000

Department

codeE last_name codeD

5 Russel 25

6 Smith 62

Employee

7 Watson 14

8 Young 45

codeE last_name codeD

1 Bennet 14

2 Doe 62

Employee

3 Fisher 25

4 Green 62

S. Vialle, G. Quercini Big Data Centrale DigitalLab, 2022 21 / 74

From SQL to NoSQL Data distribution

Sharding

Advantages

Load balance. Data can be uniformly distributed across nodes.

Inconsistencies cannot arise (non-overlapping shards).

Disadvantages

When a node fails, all its partitions are lost.

Join operations might need to be performed across nodes.

When data is added, shards might need to be rebalanced.

S. Vialle, G. Quercini Big Data Centrale DigitalLab, 2022 22 / 74

From SQL to NoSQL Data distribution

Combining replication and sharding

P1 P2 P3Data

A1

A3A2

P1

P1 P1

B1

B3B2

P2

P2 P2

C1

C3C2

P3

P3 P3

S. Vialle, G. Quercini Big Data Centrale DigitalLab, 2022 23 / 74

From SQL to NoSQL Consistency

Consistency: first definition

Definition (Consistency)

A database is consistent if the data respect all the integrity constraints
imposed by the database administrator.

codeD nameD budget

14 Administration 300,000

25 Education 150,000

DepartmentcodeE last_name codeD

1 Bennet 14

2 Doe 62

Employee

3 Fisher 25

4 Green 62

UPDATE Department
SET codeD=15
WHERE codeD=14

Transactions are used to keep a database consistent.

ACID

Atomicity, Consistency, Isolation, Durability.

S. Vialle, G. Quercini Big Data Centrale DigitalLab, 2022 24 / 74

From SQL to NoSQL Consistency

Consistency in distributed databases

Distributed transactions are used to keep a distributed database
consistent.

Transaction managers in all the nodes involved in the transaction
need to communicate before committing.

This communication is expensive.

A
codeD nameD budget

14 Administration 300,000

25 Education 150,000

B

codeE last_name codeD

1 Bennet 14

2 Doe 62

Employee

3 Fisher 25

4 Green 62

UPDATE Department
SET codeD=15
WHERE codeD=14

UPDATE Employee
SET codeD=15
WHERE codeD=14

ready to commit?

S. Vialle, G. Quercini Big Data Centrale DigitalLab, 2022 25 / 74

From SQL to NoSQL Consistency

Consistency vs Availability

Data being manipulated by a transaction is locked.

Locked data is unavailable for both read and write operations.

Locking guarantees the consistency of the database.

Locking reduces the availability of the database.

Relational vs NoSQL databases

Relational databases favor consistency over availability.

ACID-compliant databases.

NoSQL databases favor availability over consistency.

BASE: Basic Availability, Soft state, Eventually consistent.

S. Vialle, G. Quercini Big Data Centrale DigitalLab, 2022 26 / 74

From SQL to NoSQL Consistency

Consistency: second definition

Definition (Consistency)

A (distributed) database is consistent if reads and updates behave as if
there were a single copy of the data. (Source).

This second definition of consistency refers to replication
consistency.

Enforcing (strong) consistency creates problems with availability.

What to do when the nodes of a cluster cannot communicate
(network issues)?

The CAP theorem describes the relation between consistency,
availability and partition tolerance.

S. Vialle, G. Quercini Big Data Centrale DigitalLab, 2022 27 / 74

https://www.microsoft.com/en-us/research/wp-content/uploads/2016/02/final-printversion-10-5-14.pdf

From SQL to NoSQL CAP theorem

The CAP theorem

Consistency (C), Availability (A), Partition tolerance (P)

Consistency. As intended by the second definition.

Availability. A database can still execute read/write operations when some nodes
fail.

Partition tolerance. The database can still operate when a network partition
occurs.

A

B

C

Network partition

S. Vialle, G. Quercini Big Data Centrale DigitalLab, 2022 28 / 74

From SQL to NoSQL CAP theorem

The CAP theorem

Theorem (CAP, Brewer 1999)

Given the three properties of consistency, availability and partition
tolerance, a networked shared-data system can have at most two of these
properties.

Proof

Suppose that the system is partition tolerant (P). When a network
partition occurs, we have two options.

1 Allow write operations. This makes the database available (A),
but not consistent (C).

Some of the replicas might not be synced due to the network partition.

2 Disable write operations. This makes the database consistent (C)
but not available (A).

S. Vialle, G. Quercini Big Data Centrale DigitalLab, 2022 29 / 74

From SQL to NoSQL CAP theorem

The CAP theorem

Theorem (CAP, Brewer 1999)

Given the three properties of consistency, availability and partition
tolerance, a networked shared-data system can have at most two of these
properties.

Proof

The only way that we can have a consistent (C) and available (A)
database is when network partitions do not occur.

But if we assume that network partitions never occur, the system is
not partition tolerant (P).

+ When there isn’t any network partition, the CAP theorem does
not impose constraints on availability or consistency.

S. Vialle, G. Quercini Big Data Centrale DigitalLab, 2022 30 / 74

From SQL to NoSQL CAP theorem

The CAP theorem

Why choosing availability over consistency?

Server in Europe

Server in USA

1. post

update

time t1

time t2
2. read

Bob
t1 < t2

Alice

S. Vialle, G. Quercini Big Data Centrale DigitalLab, 2022 31 / 74

Alice does not see Bob’s
post between t1 and t2.
Is it really an issue?

From SQL to NoSQL CAP theorem

CAP theorem and NoSQL databases

CP Databases

MongoDB.

CouchDB.

Redis.

HBese.

AP databases

Cassandra.

DynamoDB.

S. Vialle, G. Quercini Big Data Centrale DigitalLab, 2022 32 / 74

From SQL to NoSQL NoSQL databases

NoSQL databases

NoSQL: interpretations of the acronym

Non SQL: strong opposition to SQL.

Not only SQL: NoSQL and SQL coexistence.

Goals

Address the object-relational impedance mismatch.

Provide better scalability for distributed databases.

Provide a better modeling of semi-structured data.

S. Vialle, G. Quercini Big Data Centrale DigitalLab, 2022 33 / 74

From SQL to NoSQL NoSQL databases

NoSQL databases

Families

Key-value databases.

Document-oriented databases.

Column-oriented databases.

Graph databases.

The first three families use the notion of aggregate to model the
data.

They differ in how the aggregates are organized.

Graph databases are somewhat outliers.
They were not conceived for data distribution in mind.
They were born ACID-compliant.

+ There is not a single NoSQL database and there is not a “NoSQL”
query language.

S. Vialle, G. Quercini Big Data Centrale DigitalLab, 2022 34 / 74

From SQL to NoSQL NoSQL databases

Aggregate

An aggregate is a data structure used to store the data of a specific
entity.

In that, it is similar to a row in a relational table.

We can nest an aggregate into another aggregate.

This is a huge difference from a row in a relational table.

An aggregate is a unit of data for replication and sharding.

All data in an aggregate will never be split across two shards.
All data in an aggregate will always be available on one node.
Unlike a relational database, we can control how data is distributed.

S. Vialle, G. Quercini Big Data Centrale DigitalLab, 2022 35 / 74

From SQL to NoSQL NoSQL databases

Aggregate vs relational row

Denormalized table

In a relational database, the following table would not be in first
normal form.

The column categories contains a list of values.

Searching for all products in category kitchen would be hard with SQL.

article_id name producer categories

Bamboo utensil
spoon KitchenMaster home, kitchen,

spatulas234543

+ In a relational database, we can address this problem by nor-
malizing the table.

S. Vialle, G. Quercini Big Data Centrale DigitalLab, 2022 36 / 74

From SQL to NoSQL NoSQL databases

Aggregate vs relational row

First normal form

The following table is in first normal form.

But we introduced redundancy.

What if we update the producer name of the article 234543?
In a distributed database, the rows corresponding to this article might
be on different nodes.

article_id name producer categories

Bamboo utensil
spoon KitchenMaster home 234543

Bamboo utensil
spoon KitchenMaster kitchen234543

Bamboo utensil
spoon KitchenMaster spatulas234543

+ We can further normalize the table to avoid redundancy.

S. Vialle, G. Quercini Big Data Centrale DigitalLab, 2022 37 / 74

From SQL to NoSQL NoSQL databases

Aggregate vs relational row

Second normal form

To avoid redundancy, we split the table into three tables in second
normal form.

In a distributed database, the rows in these tables might be on
different nodes.

We might need cross-node join operations, which are very expensive.

Bamboo utensil
spoon KitchenMaster234543 kitchen

article

article_id name producer

1234543

article_category

article_id category_id

1

category

category_id name

home2

spatulas3

2234543

3234543

S. Vialle, G. Quercini Big Data Centrale DigitalLab, 2022 38 / 74

From SQL to NoSQL NoSQL databases

Aggregate vs relational row

Aggregate

In an aggregate, list of values are allowed.

Searching for all products in category kitchen is supported.

{

"article_id": 234543,

"name": "Bamboo utensil spoon",

"producer": "KitchenMaster",

categories: ["home", "kitchen", "spatulas"]

}

+ All data in an aggregate is never split across different nodes.

S. Vialle, G. Quercini Big Data Centrale DigitalLab, 2022 39 / 74

From SQL to NoSQL NoSQL databases

N
Denormalization is allowed in the aggregate.

Data that are queried together are stored in the same node.

{

"code_employee": 12353,

"first_name": "John",

"last_name": "Smith",

"salary": 50000,

"position": "Assistant director",

department: {

"dept_code": 12,

"dept_name": "Accounting",

budget: 120000

}

}

S. Vialle, G. Quercini Big Data Centrale DigitalLab, 2022 40 / 74

From SQL to NoSQL NoSQL databases

S. Vialle, G. Quercini Big Data Centrale DigitalLab, 2022 41 / 74

N
Aggregates are schemaless.

Aggregates might not have the same attributes.

{

"code_employee": 12353,

"first_name": "John",

"last_name": "Smith",

"salary": 50000,

"position": "Assistant director",

department: {

"dept_code": 12,

"dept_name": "Accounting",

budget: 120000

}

}

{

"code": 345321,

"first_name": "Jennifer",

"last_name": "Green",

}

+ We don’t need to fix a rigid the schema. NULL values are
avoided.

From SQL to NoSQL NoSQL databases

{

"code_employee": 12353,

"first_name": "John",

"last_name": "Smith",

"salary": 50000,

"position": "Assistant director",

departments: [

{

"dept_code": 12,

"dept_name": "Accounting",

budget: 120000

},

{

"dept_code": 145,

"dept_name": "HR",

budget: 250000

}

]

}

S. Vialle, G. Quercini Big Data Centrale DigitalLab, 2022 42 / 74

From SQL to NoSQL NoSQL databases

{

"code_employee": 12353,

"first_name": "John",

"last_name": "Smith",

"salary": 50000,

"position": "Assistant director",

departments: [

{

"dept_code": 12,

"dept_name": "Accounting",

budget: 120000

},

{

"dept_code": 145,

"dept_name": "HR",

budget: 250000

}

]

}

S. Vialle, G. Quercini Big Data Centrale DigitalLab, 2022 42 / 74

+ We can update atomically the
salary of an employee. How would
we represent the same in a rela-
tional database?

From SQL to NoSQL NoSQL databases

N
We use a denormalized table (same as aggregate).

However, we have no guarantees that the rows relative to the
employee John Smith will be stored in the same node.

234543

code_emp first_name last_name salary position

John Smith 50000 Assistant
director

dept_code

12 Accounting

dept_name

120000

budget

234543 John Smith 50000 Assistant
director 145 HR 250000

+ The update of the salary of a single employee might be a cross-
node operation.

S. Vialle, G. Quercini Big Data Centrale DigitalLab, 2022 43 / 74

From SQL to NoSQL NoSQL databases

{

"code_employee": 12353,

"first_name": "John",

"last_name": "Smith",

"salary": 50000,

"position": "Assistant director",

departments: [

{

"dept_code": 12,

"dept_name": "Accounting",

budget: 120000

},

{

"dept_code": 145,

"dept_name": "HR",

budget: 250000

}

]

}

S. Vialle, G. Quercini Big Data Centrale DigitalLab, 2022 44 / 74

+ Updating the information on a
department is a non-atomic op-
eration

From SQL to NoSQL NoSQL databases

Aggregate-based NoSQL databases

Aggregates are schemaless.

No need to adhere to a rigid schema.
Flexible evolution of the database.

Normalization is not required.

We accept some redundancies in exchange of faster queries.
Remember: storage hardware is cheap today.

All data in an aggregate is stored in a single node.

With aggregates, we are in control of how the data is distributed.

In general, updates on an aggregate are atomic operations.

If an update entails many write operations, either all are executed or
none.

Cross-aggregate updates are not guaranteed to be atomic.

Multi-aggregate transactions might be supported and used if necessary.

S. Vialle, G. Quercini Big Data Centrale DigitalLab, 2022 45 / 74

From SQL to NoSQL NoSQL databases

Key-value databases

Idea

Data are modeled as key-value pairs.

Key: alphanumeric string, usually auto-generated by the database.

Value: an aggregate.

Query: get an aggregate given its key.

key:01029120334
product:3345
product:334561
product:234561

key:01029145522
product:221334
product:4533319
product:6734862

S. Vialle, G. Quercini Big Data Centrale DigitalLab, 2022 46 / 74

From SQL to NoSQL NoSQL databases

Key-value databases

Idea

Data is partitioned based on the key.

Partitions are distributed across different nodes.

Little to no checks on integrity constraints.

Goal. High scalability and fast read/write queries.

key:01029120334
product:3345
product:334561
product:234561

key:01029145522
product:221334
product:4533319
product:6734862

S. Vialle, G. Quercini Big Data Centrale DigitalLab, 2022 47 / 74

From SQL to NoSQL NoSQL databases

Key-value databases

Application scenarios

Scenario 1. Session store.

A Web application starts a session when a user logs in.

The application stores session data in the database.

User profile information, messages, personalized themes...

Each session is assigned a unique identifier (the key).

Session data is only queried by the identifier.

key:01029120334
product:3345
product:334561
product:234561

key:01029145522
product:221334
product:4533319
product:6734862

S. Vialle, G. Quercini Big Data Centrale DigitalLab, 2022 48 / 74

From SQL to NoSQL NoSQL databases

Key-value databases

Application scenarios

Scenario 2. Shopping cart.

An e-commerce website may receive billions of orders in seconds.

Each shopping cart has a unique identifier (the key).

Shopping cart data is only queried by the identifier.

Shopping cart data can be easily replicated to handle node failures.

key:01029120334
product:3345
product:334561
product:234561

key:01029145522
product:221334
product:4533319
product:6734862

S. Vialle, G. Quercini Big Data Centrale DigitalLab, 2022 49 / 74

From SQL to NoSQL NoSQL databases

Key-value databases

Existing key-value databases

Amazon DynamoDB. One of the first NoSQL databases.

Riak.

Redis. Possibility of tuning data persistence.

Voldemort.

key:01029120334
product:3345
product:334561
product:234561

key:01029145522
product:221334
product:4533319
product:6734862

S. Vialle, G. Quercini Big Data Centrale DigitalLab, 2022 50 / 74

From SQL to NoSQL NoSQL databases

Document-oriented databases

Idea

Data is modeled as key-value pairs, and searching aggregates based
on their attribute values is supported.

Database
Collection

Document

product_id: 12234345
name: “Bamboo utensil spoon”
categories: [“home”, “kitchen”, “spatulas”]

Document

product_id: 98761
name: “Mini round cocotte”
categories: [“home”, “kitchen”, “dining”]

S. Vialle, G. Quercini Big Data Centrale DigitalLab, 2022 51 / 74

It is possible to search
for all products in cate-
gory kitchen.

From SQL to NoSQL NoSQL databases

Document-oriented databases

Existing document-oriented databases

MongoDB, CouchDB, OrientDB.

Database
Collection

Document

product_id: 12234345
name: “Bamboo utensil spoon”
categories: [“home”, “kitchen”, “spatulas”]

Document

product_id: 98761
name: “Mini round cocotte”
categories: [“home”, “kitchen”, “dining”]

S. Vialle, G. Quercini Big Data Centrale DigitalLab, 2022 52 / 74

From SQL to NoSQL NoSQL databases

Column-oriented databases

Idea

Similar to document-oriented database but. an aggregate can be
broken into smaller data units called columns.

1234

codeE 1

first Joseph

last Bennet

position Office assistant

codeD 14

nameD Administration

budget 30000

row identifier

column family

column family

column key column value

column key column value

profile

department

S. Vialle, G. Quercini Big Data Centrale DigitalLab, 2022 53 / 74

From SQL to NoSQL NoSQL databases

Column-oriented databases

Idea

Columns can be organized into column families.

Columns in the same family are stored on the same node.

1234

codeE 1

first Joseph

last Bennet

position Office assistant

codeD 14

nameD Administration

budget 30000

row identifier

column family

column family

column key column value

column key column value

profile

department

S. Vialle, G. Quercini Big Data Centrale DigitalLab, 2022 54 / 74

From SQL to NoSQL NoSQL databases

Column-oriented databases

Idea

The value of a column can be an aggregate (wide column).

23342

codeD 14

nameD Administration

budget 3000

1234 [Joseph Bennet, Office
Assistant, 55000]

2345 [Michael Watson, Team
Leader, 80000]

3452 [Jennifer Young, Assistant
Director, 120000]

row identifier

column family

column family

column key column value

column key column value

department

employees

S. Vialle, G. Quercini Big Data Centrale DigitalLab, 2022 55 / 74

From SQL to NoSQL NoSQL databases

Column-oriented databases

Existing column-oriented databases

Cassandra, HBase, BigTable (Google).

23342

codeD 14

nameD Administration

budget 3000

1234 [Joseph Bennet, Office
Assistant, 55000]

2345 [Michael Watson, Team
Leader, 80000]

3452 [Jennifer Young, Assistant
Director, 120000]

row identifier

column family

column family

column key column value

column key column value

department

employees

S. Vialle, G. Quercini Big Data Centrale DigitalLab, 2022 56 / 74

From SQL to NoSQL NoSQL databases

Graph databases

Idea

Their data model is optimized for storing and retrieving graph data.

Relationships are first-class citizens.

In relational databases they are implicit in foreign key constraints.
In aggregate-based NoSQL stores, they are represented with nested
aggregates or references.

Existing graph databases: Neo4j, InfiniteGraph, AllegroGraph.

S. Vialle, G. Quercini Big Data Centrale DigitalLab, 2022 57 / 74

From SQL to NoSQL NoSQL databases

NoSQL databases: conclusions

Polyglot persistence

NoSQL databases are not going to replace relational databases.

Use of different data storage technologies based on the data type.

This is called polyglot persistence.

Applications

Session
data

Product
data

Customer/
product prefs

Price
analytics

Transactional
data analytics

Key-
value Document Graph Spark Relational

S. Vialle, G. Quercini Big Data Centrale DigitalLab, 2022 58 / 74

From SQL to NoSQL MongoDB

MongoDB general concepts

MongoDB

General-purpose database system based on the document data
model.

MongoDB Community: open-source and free edition of MongoDB.

MongoDB Enterprise: needs a subscription.

A record in MongoDB is stored in a document.

A document is an aggregate.

Documents are stored in collections.

A collection is similar to a relational table.

A MongoDB database is a set of collections.

S. Vialle, G. Quercini Big Data Centrale DigitalLab, 2022 59 / 74

From SQL to NoSQL MongoDB

MongoDB characteristics

Impedance mismatch reduction.

Documents are JSON objects.
One-to-one mapping to objects in programming languages.

Flexible schema.

Documents in the same collections do not have to have the same fields.

Rich query language.

Data aggregation.
Text and geospatial queries.

High availability.

Data redundancy with replication.
Automatic failover.

Horizontal scalability.

Sharding distributes data across several machines.
Support for the creation of zones of data.

S. Vialle, G. Quercini Big Data Centrale DigitalLab, 2022 60 / 74

From SQL to NoSQL Data modeling in MongoDB

Data modeling

Data modeling in relational databases is guided by normalization.

In MongoDB, data modeling can but does not have to follow
normalization rules.

Data modeling criteria

Consider the application usage of data (queries, updates).

Consider the inherent structure of the data.

Flexible schema

Consider a collection of documents:

Documents do not have to have the same fields.

The data type for a field can differ across documents.

It is possible to specify schema validation criteria to make sure
documents have a similar structure.

S. Vialle, G. Quercini Big Data Centrale DigitalLab, 2022 61 / 74

From SQL to NoSQL Data modeling in MongoDB

Data modeling

Denormalized data

It is possible to embed documents in a MongoDB document.

Denormalized data allow applications to retrieve and manipulate
related data in a single database operation.

{

"_id":"movie:1",

"title":"Vertigo",

"country":"DE",

"director":{

"_id":"artist:3",

first_name: "Alfred",

"last_name":"Hitchcock"

}

}

S. Vialle, G. Quercini Big Data Centrale DigitalLab, 2022 62 / 74

From SQL to NoSQL Data modeling in MongoDB

Data modeling

{

"_id":"movie:1",

"title":"Vertigo",

"country":"DE",

"actors": [

{

"_id": "artist:15",

"first_name": "James",

"last_name": "Stewart",

"role": "John Ferguson"

},

{

_id: "artist:16",

first_name: "Kim",

last_name: "Novak"

}

]

}

S. Vialle, G. Quercini Big Data Centrale DigitalLab, 2022 63 / 74

From SQL to NoSQL Data modeling in MongoDB

Data modeling

Normalized data

Documents can store references to other documents.

References are used instead of embedded documents.

Used to reduce data redundancy.

Collection movie

{

"_id":"movie:1",

"title":"Vertigo",

"country":"DE",

"director": "artist:3"

}

Collection artist

{

"_id":"artist:3",

first_name: "Alfred",

"last_name":"Hitchcock"

}

S. Vialle, G. Quercini Big Data Centrale DigitalLab, 2022 64 / 74

From SQL to NoSQL Data modeling in MongoDB

Data modeling

Denormalized data

Ability to retrieve related data in a single database operation. ,

Update related data in a single atomic write operation.,

Data redundancy. /

Normalized data

Useful when embedding would result in data redundancy with no or
little improvement for read operations. ,

Useful to represent complex many-to-many relationships.,

Splits data across different documents (need for join operations). /

S. Vialle, G. Quercini Big Data Centrale DigitalLab, 2022 65 / 74

From SQL to NoSQL Data modeling in MongoDB

Data modeling

One-to-one relationship

Example. One department has only one manager (and that person
can only manage one department).

Use an embedded document.

{

"_id": "dept:1",

"name": "Acconting",

budget: 50000,

manager: {

"_id": "emp:1",

"first_name": "John",

"last_name": "Smith",

"salary": 80000

}

}

S. Vialle, G. Quercini Big Data Centrale DigitalLab, 2022 66 / 74

From SQL to NoSQL Data modeling in MongoDB

Data modeling

One-to-few relationship

Example. The addresses of a person.

Use an embedded document.

{

"_id": "pers:1",

"first_name": "John",

"last_name": "Smith",

addresses: [

{street: "123 Sesame St", "city": "New York City", "country": USA},

{street: "3 House Avenue", "city": "New York City", "country": USA}

]

}

+ Difficult to find all people from New York City!

S. Vialle, G. Quercini Big Data Centrale DigitalLab, 2022 67 / 74

From SQL to NoSQL Data modeling in MongoDB

Data modeling

One-to-many relationship

Example. A product is composed of several hundred replacement
parts.

Use normalized documents.

Collection Product

{

"_id":"product:1",

"name":"Smoke detector",

"manufacturer": "SmokeSafety Inc.",

"parts": ["part:345", "part:213"]

}

Collection Part

{

"_id":"part:345",

"partno": "123-aff-456",

"cost": 0.94

}

+ The same model can represent a many-to-many relationship.

S. Vialle, G. Quercini Big Data Centrale DigitalLab, 2022 68 / 74

From SQL to NoSQL Data modeling in MongoDB

Data modeling

One-to-squillions relationship

Example. Log messages associated to a host.

Each host might be associated to millions of log messages.

Use normalized documents.

Collection Host

{

"_id":"host:1",

"name":"host.example.com",

"ipaddr": "192.168.3.2"

}

Collection LogMessage

{

"_id":"msg:1",

"message": "CPU failure"

"host": "host:1"

}

+ Storing the messages in the host document might overflow the document
size limit of 16MB.

S. Vialle, G. Quercini Big Data Centrale DigitalLab, 2022 69 / 74

From SQL to NoSQL Data modeling in MongoDB

Data modeling

Two-way referencing

Example. We need to track tasks assigned to people.

The application needs to retrieve the tasks assigned to a person.

The application needs to get the person responsible for specific tasks.

References are stored in both documents.

Collection Person

{

"_id":"person:1",

"name":"John Smith",

"tasks": ["task:1", "task:5",

"task:7"]

}

Collection Task

{

"_id":"task:1",

"description": "Budget finalization"

"due_date":ISODate("2021-04-01"),

"responsible": "person:1"

}

+ Reassigning a task to another person entails two updates.

S. Vialle, G. Quercini Big Data Centrale DigitalLab, 2022 70 / 74

From SQL to NoSQL Data modeling in MongoDB

Data modeling

Half-way denormalization

Example. Employees and the departments where they work.

Fully denormalized schema: all properties of a department are
embedded in an employee document.

Problem. Updating the department budget can be expensive.

{

"_id":"emp:1",

"name":"John Smith",

"salary": 50000,

"position": "secretary",

"department": {

"_id": "dept:1",

"name": "Accounting",

"budget": 12000

}

}

{

"_id":"emp:1",

"name":"Jennifer Young",

"salary": 70000,

"position": "director",

"department": {

"_id": "dept:1",

"name": "Accounting",

"budget": 12000

}

}

S. Vialle, G. Quercini Big Data Centrale DigitalLab, 2022 71 / 74

From SQL to NoSQL Data modeling in MongoDB

Data modeling

Half-way denormalization

Solution. Only denormalize the fields that are queried often together
with the parent document.

Collection Employee

{

"_id":"emp:1",

"name":"John Smith",

"salary": 50000,

"position": "secretary",

"department": {

"_id": "dept:1",

"name": "Accounting"

}

}

Collection Department

{

"_id":"dept:1",

" budget": 12000

}

S. Vialle, G. Quercini Big Data Centrale DigitalLab, 2022 72 / 74

From SQL to NoSQL Data modeling in MongoDB

Data modeling – Exercise

We want to create a database in MongoDB for managing information
about students in a school and the courses they take. For each student, we
want to store his/her name, first name and number; for each course, we
want to store its title, the number of credits and the name of the lecturers.

Propose a normalized solution. How many read operations would
you need to get the title of all the courses followed by a student?

Discuss a possible denormalized solution. How many read
operations would you need to get the title of all the courses followed
by a student?

S. Vialle, G. Quercini Big Data Centrale DigitalLab, 2022 73 / 74

References

References

Jules Damji et al. Learning Spark: Lightning-Fast Data Analytics.
”O’Reilly Media, Inc.”, 2020. Click here

Hoffer, Jeffrey A. Modern Database Management. 10/e. Pearson
Education India, 2011. Click here =

S. Vialle, G. Quercini Big Data Centrale DigitalLab, 2022 74 / 74

https://www.oreilly.com/library/view/learning-spark-2nd/9781492050032/
https://www.pearson.com/us/higher-education/product/Hoffer-Modern-Database-Management-10th-Edition/9780136088394.html

	From SQL to NoSQL
	Towards NoSQL
	Data distribution
	Consistency
	CAP theorem
	NoSQL databases
	MongoDB
	Data modeling in MongoDB

	References

