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What is this course about? 

• A common issue:  

Making (good) decision when problem inputs are uncertain 

 

• A common powerful paradigm based on probability theory: 

Bayesian Inference 

 

• A theoretical course with a toolbox of reference methods  
– Graphical Models 

– Gaussian Processes 

– Bayesian Filtering (e.g. Kalman filter) 

– Hidden Markov Models (HMM) 

– MDP/POMDP, 

– Reinforcement learning … 

 

• Underlying some of the most modern applications 
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Example of application: 

Data Analysis and Decision Theory 

Source: UCI Diabetes dataset 
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Example of application: 

Navigation Systems and Data Fusion 

GPS: 

 No drift 

 Medium accuracy 

 Not responsive 

Altimeter: 

 No drift 

 Altitude only 

 Not accurate 

Inertial System: 

 Responsive 

 Long term drift 

Navigation System: 

Position (L, l, z) 

Angles (yaw, pitch, roll) 

Speed 

Angular speed 
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Example of application: 

Speech recognition systems 

n1 n2 n3 

a1 a2 

w1 w2 

ǝ1 ǝ2 

Cepstral coefficients 
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Plan 

 

Part I: Bayesian inference and graphical models 

– Static models + bayesian filtering 

– Given by myself 

– Lessons from 1 to 4 

 

Part II: Markov models and processes 

– Dynamic models (Markov Chains, HMM, MDP, POMDP, etc) 

– Given by Matthieu Geist 

– Lessons from 5 to 8 
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Detailed Plan of Part I 

Part I: lessons 1 to 4 by myself 

– Introduction: how to model uncertainty 

• Reminder of basic notions of probability theory 

– Bayesian estimation: general principles 

• Bayes’ rule 

• Bayes estimators 

– Elementary bayesian methods 

• Classification:  Naive Bayes 

• Regression: Linear models 

• Clustering: EM 

– Gaussian Processes 

– Bayesian Filtering and Kalman filters 

– Graphical models: 

• Markov Random Fields 

• Bayesian Networks 
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Different types of uncertainty 

• From hardly predictable future events (“randomness”) 

– Chaotic events like throwing a dice 

• From “myopic” views of reality because  

– Information is not easily observable.  

E.g. kinetic energy of a given molecule in a gas? 

– Information is useless/too expensive to be stored 

 E.g. how many hair does one have on one’s head? 

E.g. data streams (logs etc) 

• From lack of information/knowledge 

– Information: will I pass the exam? 

– Knowledge: HMM do not match brain perception of spoken languages 

Frequentist View 

Bayesian View 
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The Frequentist View 

• Historical view of probabilities made by statisticians: 

“How likely is an event to occur, given past observations of it?” 

• Probability interpretation: probabilities are limits of frequencies 

• Fundamental principle:  law of large numbers lim
𝑛→+∞

 𝑋𝑖
𝑛
𝑖=1

𝑛
= 𝐸(𝑋) 

• Restrictions: assume 

– A large number of observations are available 

• Either available from a large reservoir (population, etc) 

• Or outputs of repeatable experiences (throwing dice) 

– Stationarity 

• At the origin of many useful notions: 

– Expected values (as a limit of average) 

– Independence and sampling (e.g. polls in a population) 

– Confidence intervals. Convergences and concentration inequalities 
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The Bayesian View 

• Modern view of probabilities used in machine learning: 

“How likely is an event to occur, given what I believe to know?” 

• Probability interpretation: 

Probabilities are the amount of confidence that I grant to some events to occur, given what I know.  

• Fundamental principle: Bayes’ rule and inference 

• Advantages: 

– Encompasses frequentist interpretation of probability 

– Does not assumes events are observable or stationary: 

 E.g. “Will I pass my exam?” 

• Limitations:  

– Too ambitious to be scalable:  every variable or parameter has to be described by its 

distribution 
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Before going further: 

Probability Reminder & Notation 

Probability space: (Ω, ℇ, 𝑃) 
– A set Ω of possible outcomes 

– A set ℇ of events defined as subsets of outcomes closed under 
• Conjunction (and):  𝐸1 ∩𝐸2 
• Disjunction (or):  𝐸1 ∪𝐸2 

• Negation (not):  𝐸 = Ω ∖ 𝐸 

– A function 𝑃: ℇ → [0,1] mapping events to probabilities s.t. 

• 𝑃 Ω = 1 
• 𝑃 𝐸1 ∪𝐸2 = 𝑃 𝐸1 + 𝑃 𝐸2 − 𝑃 𝐸1 ∩𝐸2    

 

Random variable: 
– A function 𝑋: Ω → 𝐷𝑋 mapping every outcome to a value in 𝐷𝑋 
– Such that the fact 𝑋 takes its value into some “reasonable” subset V ∈ Σ is 

mapped to some probability: 

∀V ∈ Σ, 𝑋−1 𝑉 ∈ ℇ 
(where Σ ∈ 2𝐷𝑋  is closed under ∩,∪,\ ) 

– Distribution of 𝑋: PX x = 𝑃 𝑋 = 𝑥 = 𝑃 𝑋
−1 𝑥  
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Joint distribution and the curse of dimensionality 

Joint distribution :  

– Given a set of random variables 𝑋1 , … , 𝑋𝑛,  

– Joint variable is 𝑋1 , … , 𝑋𝑛 : Ω → 𝐷𝑋1 × ⋯× 𝐷𝑋𝑛 whose 

– Joint distribution  is: 

P 𝑋1 ,…,𝑋𝑛 x1, … , xn = 𝑃(𝑋1 = 𝑥1 ∩⋯∩ 𝑋𝑛 = 𝑥𝑛) 

= 𝑃(𝑋1
−1 𝑥1  ∩ ⋯∩ 𝑋𝑛

−1 𝑥𝑛  ) 

Curse of dimentionality: 

– Joint distribution contains all information we need but … 

– But if 𝑋1 , … , 𝑋𝑛 can take each m values, need a table of size 𝑚𝑛 

→ Probabilistic models do not scale  

→ Unless further hypothesis (independence, Markov property, etc) 
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Probability Theory: 

the two main operations to know 

• Marginalization ≡ reducing joint distribution to a subset of variables 

• Information loss 

• Obtained by the sum rule: 

𝑃𝑉1 ,…,𝑉𝑛 𝑣1,… , 𝑣𝑛 =  𝑃𝑉1 ,…,𝑉𝑛,𝐻1 ,…,𝐻𝑚 𝑣1,… , 𝑣𝑛, ℎ1, … , ℎ𝑚
ℎ1 ,…,ℎ𝑚

 

• Conditioning ≡ restricting joint distribution by a subset of values 

• Information gain 

• Obtained by the product rule: 

𝑃𝑉1,…,𝑉𝑛 𝑣1, … , 𝑣𝑛|𝐾1 = 𝑘1 , … , 𝐾𝑚 = 𝑘𝑚

=
𝑃𝑉1,…,𝑉𝑛 ,𝐾1,…,𝐾𝑚 𝑣1 , … , 𝑣𝑛, 𝑘1 , … , 𝑘𝑚

𝑃𝐾1,…,𝐾𝑚 𝑘1 , … , 𝑘𝑚
 

• Requires marginalization 
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Probability Independence 

Definition: 

• Two events 𝐴 and 𝐵 are independent iff: 

𝑃 𝐴 ∩ 𝐵 = 𝑃 𝐴 × 𝑃(𝐵) or equiv. 𝑃 𝐴 𝐵 = 𝑃(𝐴) 

• Extension to random variables: 

∀𝑥, ∀𝑦, 𝑃 𝑋 = 𝑥 ∩ 𝑌 = 𝑦 = 𝑃 𝑋 = 𝑥 ×𝑃(𝑌 = 𝑦) 

• Extension to a set of events/variables 𝐴𝑖 1≤𝑖≤𝑛: 

𝑃  𝐴𝑖1≤𝑖≤𝑛 =  𝑃 𝐴1≤𝑖≤𝑛  or equiv. ∀𝐼, 𝑃  𝐴𝑖𝐼  𝐴𝑖[1,𝑛]\𝐼 = 𝑃( 𝐴𝑖𝐼 ) 

 

Examples: 

𝑃 𝑑𝑖𝑐𝑒 1 & 2 𝑠ℎ𝑜𝑤 1 = 𝑃 𝑑𝑖𝑐𝑒 1 𝑠ℎ𝑜𝑤𝑠 1 × 𝑃 𝑑𝑖𝑐𝑒 2 𝑠ℎ𝑜𝑤𝑠 1  

𝑃 𝐻𝑢𝑟𝑟𝑖𝑐𝑎𝑛𝑒 𝑥 𝐵𝑢𝑡𝑡𝑒𝑟𝑓𝑙𝑦 𝑦 𝑓𝑙𝑎𝑝𝑠 𝑖𝑡𝑠 𝑤𝑖𝑛𝑔𝑠 = 𝑃 𝐻𝑢𝑟𝑟𝑖𝑐𝑎𝑛𝑒 𝑥  

 
Remarks: 

• Independence is very common (to a first approximation) 

• Independence is scalable (factorizes joint distribution). 


