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What is this course about?

* A common issue:
Making (good) decision when problem inputs are uncertain

* A common powerful paradigm based on probability theory:
Bayesian Inference

e A theoretical course with a toolbox of reference methods
— Graphical Models
— Gaussian Processes

— Bayesian Filtering (e.g. Kalman filter)
— Hidden Markov Models (HMM)
— MDP/POMDR,

— Reinforcement learning ...

* Underlying some of the most modern applications
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Example of application:
Data Analysis and Decision Theory
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Source: UCI Diabetes dataset
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Example of application:

Navigation Systems and Data Fusion

Navigation System:
Position (L, |, z)
Angles (yaw, pitch, roll)

Altimeter:
© No drift
@ Altitude only
® Not accurate

Speed

I Angular speed

GPS:
© No drift
© Medium accuracy
@ Not responsive

Inertial System:
© Responsive
©® Long term drift
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Example of application:
Speech recognition systems
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Plan

Part I: Bayesian inference and graphical models
— Static models + bayesian filtering
— Given by myself
— Lessons from | to 4

Part ll: Markov models and processes
— Dynamic models (Markov Chains, HMM, MDP, POMDP, etc)
— Given by Matthieu Geist
— Lessons from 5 to 8
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Detailed Plan of Part |

Part l:lessons | to 4 by myself
— Introduction: how to model uncertainty
* Reminder of basic notions of probability theory
— Bayesian estimation: general principles
* Bayes’ rule
* Bayes estimators
— Elementary bayesian methods

 Classification: Naive Bayes
* Regression: Linear models
* Clustering: EM

— Gaussian Processes
— Bayesian Filtering and Kalman filters

— Graphical models:
e Markov Random Fields
* Bayesian Networks
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Different types of uncertainty

* From hardly predictable future events (“randomness”)

— Chaotic events like throwing a dice

* From “myopic” views of reality because

— Information is not easily observable.

E.g. kinetic energy of a given molecule in a gas?

— Information is useless/too expensive to be stored

E.g. how many hair does one have on one’s head?

E.g. data streams (logs etc)

* From lack of information/knowledge

— Information: will | pass the exam?

— Knowledge: HMM do not match brain perception of spoken languages
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The Frequentist View

Historical view of probabilities made by statisticians:

“How likely is an event to occur, given past observations of it?”

* Probability interpretation: probabilities are limits of frequencies
* Fundamental principle: law of large numbers lir4r_1 Z‘=Tlxl = E(X)
n—->+0o

Restrictions:assume

— A large number of observations are available

» Either available from a large reservoir (population, etc)

* Or outputs of repeatable experiences (throwing dice)
— Stationarity
* At the origin of many useful notions:
— Expected values (as a limit of average)
— Independence and sampling (e.g. polls in a population)

— Confidence intervals. Convergences and concentration inequalities
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The Bayesian View

* Modern view of probabilities used in machine learning:
“How likely is an event to occur, given what | believe to know?”
* Probability interpretation:
Probabilities are the amount of confidence that| grant to some events to occur, given what | know.

* Fundamental principle: Bayes’rule and inference
* Advantages:

— Encompasses frequentist interpretation of probability

— Does not assumes events are observable or stationary:

E.g.“Will | pass my exam?”

 Limitations:

— Too ambitious to be scalable: every variable or parameter has to be described by its

distribution
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Before going further:
Probability Reminder & Notation

Probability space: (), €, P)
— A set () of possible outcomes
— A set € of events defined as subsets of outcomes closed under

* Conjunction (and): E,NE,
* Disjunction (or): E, VE,
* Negation (not): E=Q\E
— A function P: € — [0,1] mapping events to probabilities s.t.
- P(Q) =1

* P(E;UE;) = P(E;) + P(E;) — P(E; N Ey)

Random variable:
— A function X: Q) —» Dy mapping every outcome to a value in Dy

— Such that the fact X takes its value into some “reasonable” subset V € X is
mapped to some probability:

vwe X W(V)ec¢€
(where T € 2Px is closed under N,U,\ )
— Distribution of X:Py(x) = P(X = x) = P(X"1({x}))
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Joint distribution and the curse of dimensionality

Joint distribution:

— Given a set of random variables X, ..., X;,

— Joint variableis (X;,...,X):Q - Dy X ---X Dy whose

— Joint distribution is:

Pix,,..x) (X1 s Xn) = P(Xy =% 0N Xy = xp)
= P(X; ({x}) N n X ({a}))

Curse of dimentionality:

— Joint distribution contains all information we need but ...

— Butif Xy, ..., X;, can take each m values, need a table of size m"

— Probabilistic models do not scale

— Unless further hypothesis (independence, Markov property, etc)
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Probability Theory:
the two main operations to know

* Marginalization = reducingjoint distribution to a subset of variables
* Information loss
* Obtained by the sum rule:

PVl!-"JVn (121, e Un) — E PVl,...,Vn,Hl,...,Hm(vl’ e vn, hl’ . hm)
hl,...,hm

o

K Conditioning = restricting joint distribution by a subset of values \

* Information gain
* Obtained by the product rule:
..... Vn(vl, ,vanl == kl' e ) Km = km)

Py, . Vo Ki Ko (V1 oo Vo Kgy e Ko)

.....

K Requires marginalization /
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Probability Independence

Definition:
* Two events 4 and B are independent iff:

P(ANB) = P(A) X P(B) or equiv.P(A|B) = P(A4)
* Extension to random variables:

Vx,Vy,P(X =xNY =y) =PX=x) XP(Y =vy)
* Extension to a set of events/variables (4;)<j<n:

P(N1<isnAi) = [1<i<n P(A) or equiv.‘v’I,P(ﬂ,Al-| n[1,71]\1141') = P(N; A;)

Examples:
P(dice1 &2 show 1) = P(dice 1 shows 1) X P(dice 2 shows 1)
P(Hurricane x|Butterfly y flaps its wings) = P(Hurricane x)

Remarks:
* Independence is very common (to a first approximation)
* Independence is scalable (factorizes joint distribution).
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