MANAGING UNCERTAINTY

Part I: <u>frederic.pennerath@supelec.fr</u> Part II: <u>matthieu.geist@supelec.fr</u>

Managing uncertainty, Frederic Pennerath

What is this course about?

- A common issue: Making (good) decision when problem inputs are uncertain
- A common powerful paradigm based on **probability theory**: **Bayesian Inference**
- A theoretical course with a toolbox of reference methods
 - Graphical Models
 - Gaussian Processes
 - Bayesian Filtering (e.g. Kalman filter)
 - Hidden Markov Models (HMM)
 - MDP/POMDP,
 - Reinforcement learning ...
- Underlying some of the most modern applications

Example of application: Data Analysis and Decision Theory

Source: UCI Diabetes dataset

Example of application: Navigation Systems and Data Fusion

Supélec

Example of application: Speech recognition systems

Plan

Part I: Bayesian inference and graphical models

- Static models + bayesian filtering
- Given by myself
- Lessons from 1 to 4

Part II: Markov models and processes

- Dynamic models (Markov Chains, HMM, MDP, POMDP, etc)
- Given by Matthieu Geist
- Lessons from 5 to 8

Detailed Plan of Part I

Part I: lessons I to 4 by myself

- Introduction: how to model uncertainty
 - Reminder of basic notions of probability theory
- Bayesian estimation: general principles
 - Bayes' rule
 - Bayes estimators
- Elementary bayesian methods
 - Classification: Naive Bayes
 - Regression: Linear models
 - Clustering: EM
- Gaussian Processes
- Bayesian Filtering and Kalman filters
- Graphical models:
 - Markov Random Fields
 - Bayesian Networks

References

Different types of uncertainty

- From hardly predictable future events ("randomness")
 - Chaotic events like throwing a dice
- From "myopic" views of reality because
 - Information is not easily observable.
 - E.g. kinetic energy of a given molecule in a gas?
 - Information is useless/too expensive to be stored

E.g. how many hair does one have on one's head?

E.g. data streams (logs etc)

- From lack of information/knowledge
 - Information: will I pass the exam?
 - Knowledge: HMM do not match brain perception of spoken languages

The Frequentist View

• Historical view of probabilities made by statisticians:

"How likely is an event to occur, given past observations of it?"

- Probability interpretation: probabilities are limits of **frequencies**
- Fundamental principle: law of large numbers $\lim_{n \to +\infty} \frac{\sum_{i=1}^{n} X_i}{n} = E(X)$
- Restrictions:assume
 - A large number of observations are available
 - Either available from a large reservoir (population, etc)
 - Or outputs of repeatable experiences (throwing dice)
 - Stationarity
- At the origin of many useful notions:
 - Expected values (as a limit of average)
 - Independence and sampling (e.g. polls in a population)
 - Confidence intervals. Convergences and concentration inequalities

The Bayesian View

• Modern view of probabilities used in machine learning:

"How likely is an event to occur, given what I believe to know?"

• Probability interpretation:

Probabilities are the amount of **confidence** that I grant to some events to occur, given what I know.

- Fundamental principle: Bayes' rule and inference
- Advantages:
 - Encompasses frequentist interpretation of probability
 - Does **not** assumes events are observable or stationary:
 - E.g. "Will I pass my exam?"
- Limitations:
 - Too ambitious to be scalable: every variable or parameter has to be described by its distribution

Before going further: Probability Reminder & Notation

Probability space: (Ω, \mathcal{E}, P)

- A set Ω of possible **outcomes**
- A set \mathcal{E} of events defined as **subsets** of outcomes closed under
 - Conjunction (and): $E_1 \cap E_2$
 - Disjunction (or): $E_1 \cup E_2$
 - Negation (not): $\overline{E} = \Omega \setminus E$
- A function $P: \mathcal{E} \rightarrow [0,1]$ mapping events to probabilities s.t.
 - $P(\Omega) = 1$
 - $P(E_1 \cup E_2) = P(E_1) + P(E_2) P(E_1 \cap E_2)$

Random variable:

- A function $X: \Omega \to D_X$ mapping every outcome to a value in D_X
- Such that the fact X takes its value into some "reasonable" subset $V \in \Sigma$ is mapped to some probability:

 $\forall V \in \Sigma, X^{-1}(V) \in \mathcal{E}$

(where $\Sigma \in 2^{D_X}$ is closed under \cap, \cup, \setminus)

- **Distribution** of *X*: $P_X(x) = P(X = x) = P(X^{-1}(\{x\}))$

Joint distribution and the curse of dimensionality

Joint distribution :

- Given a set of random variables X_1, \ldots, X_n ,
- Joint variable is $(X_1, ..., X_n): \Omega \to D_{X_1} \times \cdots \times D_{X_n}$ whose
- Joint distribution is:

$$P_{(X_1,\dots,X_n)}(x_1,\dots,x_n) = P(X_1 = x_1 \cap \dots \cap X_n = x_n)$$

= $P(X_1^{-1}(\{x_1\}) \cap \dots \cap X_n^{-1}(\{x_n\}))$

Curse of dimentionality:

- Joint distribution contains all information we need but ...
- But if X_1, \ldots, X_n can take each m values, need a table of size m^n
- \rightarrow Probabilistic models do not scale
- \rightarrow Unless further hypothesis (independence, Markov property, etc)

Probability Theory: the two main operations to know

- **Marginalization** \equiv reducing joint distribution to a subset of variables
- Information loss
- Obtained by the **sum rule**:

$$P_{V_1,\dots,V_n}(v_1,\dots,v_n) = \sum_{h_1,\dots,h_m} P_{V_1,\dots,V_n,H_1,\dots,H_m}(v_1,\dots,v_n,h_1,\dots,h_m)$$

- **Conditioning** \equiv restricting joint distribution by a subset of values
- Information gain
- Obtained by the **product rule**:

$$P_{V_1,\dots,V_n}(v_1,\dots,v_n|K_1 = k_1,\dots,K_m = k_m) = \frac{P_{V_1,\dots,V_n,K_1,\dots,K_m}(v_1,\dots,v_n,k_1,\dots,k_m)}{P_{K_1,\dots,K_m}(k_1,\dots,k_m)}$$

• Requires marginalization

Probability Independence

Definition:

• Two events A and B are **independent** iff:

 $P(A \cap B) = P(A) \times P(B)$ or equiv. P(A|B) = P(A)

• Extension to random variables:

$$\forall x, \forall y, P(X = x \cap Y = y) = P(X = x) \times P(Y = y)$$

• Extension to a set of events/variables $(A_i)_{1 \le i \le n}$:

 $P(\bigcap_{1 \le i \le n} A_i) = \prod_{1 \le i \le n} P(A) \text{ or equiv. } \forall I, P(\bigcap_I A_i \mid \bigcap_{[1,n] \setminus I} A_i) = P(\bigcap_I A_i)$

Examples:

 $P(dice \ 1 \ \& \ 2 \ show \ 1) = P(dice \ 1 \ shows \ 1) \times P(dice \ 2 \ shows \ 1)$ $P(Hurricane \ x|Butterfly \ y \ flaps \ its \ wings) = P(Hurricane \ x)$

Remarks:

- Independence is very common (to a first approximation)
- Independence is scalable (factorizes joint distribution).

