
Reducing the Dimensionality of the Reward Space
in the Inverse Reinforcement Learning Problem

Edouard Klein1,2
1Equipe ABC,

LORIA-CNRS, France

Matthieu Geist2
2Supélec,

IMS Research group, France

Olivier Pietquin2,3
3UMI 2958

GeorgiaTech-CNRS, France

Abstract—This paper deals with the Inverse Reinforcement
Learning framework, whose purpose is to learn control policies
from demonstrations by an expert. This method inferes from
demonstrations a utility function the expert is allegedly maxi-
mizing. In this paper we map the reward space into a subset of
smaller dimensionality without loss of generality for all Markov
Decision Processes (MDPs). We then present three experimental
results showing both the promising aspect of the application of
this result to existing IRL methods and its shortcomings. We
conclude with considerations on further research.

I. INTRODUCTION

In the Reinforcement Learning (RL) framework [1], an
agent is left to find the behavior that, in the long run,
maximizes a cumulative reward provided by some oracle. By
correctly defining the reward, one can use the RL framework
to make an agent fulfil a certain task (without explicitly
specifying the task).

For some tasks, defining the corresponding reward is a
daunting process. Surely, one has at least an idea about
what states (configurations of the system to be controled)
are preferable to others. This is however not enough to
precisely define the numerical reward that will yield the
desired behavior. An example of such a task is driving a car.
It is preferable not to be too close to the car in front of ours.
Similarily it is preferable not to brake too hard in order to
avoid being rear-ended. But exactly how much is it preferable
not to break too hard over not being too close to the car in
front of ours ? Variations between the relative weights of
these two criteria in the reward will certainly lead to very
different driving behaviors.

A proposed workaround is the Inverse Reinforcement
Learning (IRL) paradigm [2], where one tries to learn the
reward optimized by an expert1. Then, the idea about what
states are preferable to others can be empirically used by a
human expert driving the car. The reward function can be
infered from the data of the demonstration, and the agent can
mimic the expert by optimizing this reward.

The paper is organized as follows: we begin by introducing
the necessary mathematical background and present the related

1The expert may be non human, in which case one hopes to use a slow or
costly expert system to train a less costly agent.

work in the field. We then present and prove our main result,
and explain its use in a Linear Programming framework.
Finally, we explain the preliminary experimental work we
have done and show where we are heading in light of these
preliminary results.

II. BACKGROUND

Often, the RL problem is solved in a Markov Decision
Process setting: the agent is said to be in a state st ∈ S
(transition probabilities respect the Markovian criterion. As
a consequence states contain all the information the agent
needs to take a decision) in which it has to choose an action
at ∈ A. This will make it step stochastically to another state
st+1, receiving a reward R(st).

The reward is seen here as a mapping from the states
only to the reals. This is not normalized in the literature,
some authors using a mapping S × S → R (e.g., in [3]) or
a mapping S × A × S → R. We argue that one should not
take the action into account when computing the reward. In
the case of IRL, recording the action can be difficult. It is
possible to record the state an agent is in from an external
point of view, but guessing the action from the outside is
a supplementary engineering problem we shall get rid of if
we can. As transitions follow each others, we also argue
that there is no use in taking both states of the transition
into account. The following state will be present in the next
transition, so the associated reward can be computed then.
Plus, needing both states to compute the reward is a sign
that the states may not respect the markovian criterion. R is
represented as a state indexed column vector.

We place ourselves in the case of finites MDPs. Actions are
mapped with the probability with which they make the agent
step from one state to the other. Formally, to each action a
is associated a |S| × |S| matrix Pa whose element (i, j) is
the probability to transit to state j when taking action a in
state i. A policy is a mapping π: s ∈ S 7→ π(s) ∈ A which
can be defined the same way, that is to say by associating
it with a Pπ matrix whose i-th line is the i-th line of the
(Pa, a = π(s)) matrix. From now on, we will speak about
actions and policies using indiscriminately the notations a
and π or Pa and Pπ .

The quality of each policy is quantified by its value function,
a mapping S → R which associates to each state the expected
sum of discounted rewards an agent will get by following
policy π from this state. Formally, given a policy π, the value
function is defined by:

V π(s) = E

∑
t≥0

γtR(st)

∣∣∣∣∣∣ s0 = s, π

 (1)

and represented, as the reward, by a state indexed column
vector.

The RL problem can be casted as finding the optimal
policy (often noted π∗), the value function of which is greater,
for every state, than the value function of any other policy:
∀π, V π∗ � V π . The value function of any policy is the
fixed point of the associated Bellman evaluation operator Tπ

defined as TπV = R+ γPπV .

The IRL problem is the following: given an optimal policy
π∗ and the set of actions A from which the policy was drawn,
guess the reward with respect to which this policy is optimal.
The reward being the unknown, we will sometimes add the
reward in the notation of the value function. Thus, V πR is the
value function of policy π under reward R.

We denote the set of the optimal policies with respect
to a certain reward R and a certain discount factor γ as
Π∗(R) =

{
π∗|∀π, V π∗

R � V πR
}

.

Throughout this paper, we will use the transitive notion of
equivalence between rewards:

Definition 1. Two rewards R1 and R2 are said to be equiva-
lent if Π∗(R1) = Π∗(R2). This is noted R1 ≡ R2.

A reward is said to be degenerative when it is equivalent to
the null vector (R ≡ [0 . . . 0]T). Indeed the null vector admits
any policy as an optimal policy.

III. RELATED WORK

The IRL problem was first defined in [4], where its
ill-posed nature was already noted: the set of reward with
respect to which the expert’s policy is optimal is far from
being a singleton. Furthermore there exists some degenerative
rewards that admit every policy as optimal and such bear no
useful information.

The work of [4] was further pushed in [2], providing a
sufficient and necessary condition for rewards to be solution
of the IRL problem. The problem of the non uniqueness
and possible degenerativeness of the solution was worked
around using a criterion according to which the difference
between the value of the expert’s actions and the value of the
next-to-best actions is maximized. A penalty term rewarding
sparse solutions is also introduced. For large (or continuous)

problems, a criterion for sampled trajectories is proposed.

The seminal work of [5] proposes an iterative algorithm,
where the difference between the value of the expert and the
value of the second best policy is maximized. Further work
(partially summed up in [6]) often used the same iterative
structure, changing the argument that allows finding a unique
solution. In [7], [8] and [9], the authors use a game theoretic
approach, in [10], [11] and [12] the IRL problem is casted
as a multiclass classification problem whereas in [13] and
[6] the reward is computed using gradient methods so that
the agent’s behavior matches the expert’s observed behavior.
Finally, Bayesian methods have been proposed ; the work in
[14] being very similar to previous work in [15], which was
not cast as an IRL problem. Follow ups include [16] and [17].
Maximum entropy priors are introduced in [18], [19] and [20].

This paper studies reward shaping and begins to explore
its potential use in the framework of [2]. We do not explore
any new cost function, the references given above cover
that ground extensively. We do present some preliminary
experimental results that pave the way for future research,
aiming at speeding up search in the reward space or defining
more precisely the notion of reward sparsity.

IV. DIMENSIONALITY REDUCTION

A. Main result

In this subsection, we will show that there exists a set of
dimension |S| − 2 so that every non degenerative reward is
equivalent to at least one element of the set.

Lemma 1. Let R1 be a reward vector,
let R2 be a reward vector so that ∃α > 0, R2 = αR1

the following holds: R1 ≡ R2.

Lemma 2. Let R1 be a reward vector,
let 1 be the column vector whose |S| elements are all equal
to 1,
let R2 be a reward vector so that ∃λ ∈ R, R2 = R1 + λ1,
the following holds: R1 ≡ R2.

Proofs of this can be found in [21].

Proposition 1. Let M = {R|1TR = 0, ||R||1 = 1} be,
the following holds: ∀R ∈ R|S|\{λ1, λ ∈ R},∃R′ ∈M,R′ ≡
R.

This means that the search for the reward can take place in
the unit sphere intersected with and hyperplane of the reward
space, thus leading to a dimensionality reduction of 2.

The proof goes as follow: by defining R′ = α(R + λ1),
with λ = −1TR

|S| and α = 1
||R+λ1||1 , one can see that R′ ∈M

and R′ ≡ R.

B. Linear programming constraints

In [2], we are given a necessary and sufficient condition
for a reward R to admit a given policy as optimal: for every

action Pa the expert following Pπ had the possibility to take,
the following matrix inequality must be met:

(Pπ − Pa)(I − γPπ)−1R � 0 (2)

Although the proof can be found in the forementionned
paper, we find useful to recall its main argument here: the
expert is following the best policy with respect to the unknown
reward function. These inequalities stem from the fact that for
every action a, the expected value of the next state must be
less than or the same as the expected value of the next state
for taking action π(s). This is written as PπV π � PaV

π .
Consequently, the ith line of the (Pπ − Pa)(I − γPπ)−1

matrix is a constraint on R that, if satisfied, will make it
preferable to choose action π(i) over a in state i.

Equation 2 yields at most |A| · |S| − |S| = (|A| − 1)|S|
constraints. There are |A| matrices Pa, each yielding |S|
constraints. |S| of these, however, are null because once for
each state we will have a = π(s) and the resulting line will
be filled with zeros.

When a cost function is added, this is a linear programming
problem. The constraints stemming from the definition of M ,
i.e. that 1TR = 0 and ||R||1 = 1, can be added to it quite
easily, thus restricting the solutions to the previously defined
(|S| − 2)-dimensional subset.

C. Sparsity of the reward vector

Sparsity is often stated to be a quality of the reward vector.
For example one of the cost functions given in [2] includes a
regularization term (P (i) denotes the i-th row of P):

J(R) =

 |S|∑
i=1

min
a∈A

(Pπ(i)− Pa(i))(I − γPπ)−1R

−λ||R||1
(3)

V. PRELIMINARY EXPERIMENT

In the previous section, no cost function of our own has
been provided, as this is beyond the scope of this paper. If
anything cost functions provided in [2] (e.g., the one given
Equation 3) would yield good results with our LP formulation
above.

A first experiment was run to see if a sparse reward could
be found by modifying the simplex algorithm to work without
a cost function, but enumerating only sparse rewards. In the
simplex algorithm, one start by selecting a basic feasible
solution that is to say a vertex of the polytope defined by the
linear constraints. Then, one jumps from vertex to vertex by
minimizing (or maximizing) the cost function. Basic feasible
solutions can be found by choosing which constraints are
binding and which are not. The linear system is then solved
for the free variables (the variables corresponding to the non
binding constraints); if a solution exists, it is a basic feasible

 0
 0.5

 1
 1.5

 2
 2.5

 3
 3.5

 4

 0 0.5 1 1.5 2 2.5 3 3.5 4

-0.6

-0.4

-0.2

 0

 0.2

 0.4

 0.6

-0.6

-0.4

-0.2

 0

 0.2

 0.4

 0.6

Fig. 1. Reward found by our algorithm on the classic gridworld problem.
this is very similar to what can be found in [2] or [22].

solution.

As we did not make use of a cost function, we looked for
sparse basic feasible solutions directly. As the constraints are
inequalities, the system is loaded with slack variables. If all
the slack variables are considered free, then one only needs
two additional variables to get a symetric linear system. Only
a few of them are solvable, they are sparse as only two
components of the reward vector are non zero.

This has proved successful on the now classical gridworld
problem, see Fig. 1. In this setting, the expert goes from the
lower left corner (0, 4) of a 5× 5 gridworld to its upper right
corner (4, 0). The true reward function the expert has been
trained with its 0 everywhere but in the upper right corner
where the reward is 1. The reward found by our algorithm
just adds a negative reward at the starting point that does
not change the behavior. It is sparse. However, with its
complexity of O(|S|5) this algorithm is not very practical.

This success on the gridworld cannot be generalized to all
MDPs. It is easy to create MDPs where the constraints are so
that there is no sparse basic feasible solution that explains
the expert’s behavior. Randomly generating the transition
probabilities and the reward on a 4-states, 2-actions MDP will
yield one such counter-example quite quickly.

VI. FURTHER WORK

We have room for improvement in the computational
complexity of the algorithm. The O(|S|5) complexity
mentioned above is the worst-case complexity. The mean
complexity can be vastly reduced by solving only the
solvable systems and detecting the unsolvable ones earlier
in the algorithm. We can also preprocess the constraints to
eliminate redundancy.

The fact that our algorithm does not solve all kinds of
MDPs is problematic. We have two ideas to circumvent

Fig. 2. Policy of the expert. This policy is found by a dynamic programming
algorithm when the reward is 0 everywhere except in the upper right where
it is 1. Actions are executed noisily : with probability 0.3 another action than
what the agent chooses is executed.

this. The first idea is to characterize the class of MDPs
our algorithm is able to work with. By restricting ourselves
to a certain class of MDPs we could provide theoretical
guarantees about our method. This could also help to
reduce the computational complexity by allowing a quicker
preprocessing of the linear constraints.

The second idea is to transform the state space so that
a sparse basic feasible solution always exists. Although
more difficult, this would be more powerful as we could
tackle any kind of MDPs. In the gridworld, the expert is
going from somewhere to somewhere else and the topology
bends itself quite well to a configuration where there is one
attractive state and one repulsive state. This is the kind of
configuration our algorithm outputs. Some problems however
do not present this kind of topology. The balancing pole
problem is typical example. The expert is trying to balance
a pole with one degree of freedom in the vertical position.
There is one attractive state (the vertical position) but there
are two repulsive states as the pole can fall on one side or the
other. This is certainly problematic for our algorithm, but a
state space transformation that would bend the state space so
that both repulsive states are close to each other would solve
this problem. Our hope is to find some kind of automatic
feature discovery mechanism that could do this.

One last track for future work is sampling or approximation.
Small, discrete state spaces are fine for testing purpose. We
should be able to tackle large or continuous problems. The
policy of the expert is then unknown but observable. Our
algorithm can be modified to work with sample transitions
from the expert. Methods exist in the linear programming
framework to work with sampled constraints, they could be
adapted to our setting.

VII. CONCLUSION

In this paper, we give a proposition reducing the dimen-
sionality of the set in which the reward is looked for and an
experimental result using it. Although promising on a certain
light, there still are serious shortcomings before this can be
applied in a practical IRL algorithm. Directions for further
work in order to remove these shortcomings are explained.

REFERENCES

[1] R. Sutton and A. Barto, Reinforcement learning. MIT Press, 1998.
[2] A. Ng and S. Russell, “Algorithms for inverse reinforcement learning,”

in International Conference on Machine Learning (ICML). Morgan
Kaufmann Publishers Inc., 2000, pp. 663–670.

[3] A. Ng, D. Harada, and S. Russell, “Policy invariance under reward trans-
formations: Theory and application to reward shaping,” in International
Conference on Machine Learning (ICML), 1999, pp. 278–287.

[4] S. Russell, “Learning agents for uncertain environments (extended
abstract),” in Annual Conference on Computational Learning Theory.
ACM, 1998, p. 103.

[5] P. Abbeel and A. Ng, “Apprenticeship learning via inverse reinforcement
learning,” in International Conference on Machine Learning (ICML).
ACM, 2004, p. 1.

[6] G. Neu and C. Szepesvári, “Training parsers by inverse reinforcement
learning,” Machine learning, vol. 77, no. 2, pp. 303–337, 2009.

[7] U. Syed and R. Schapire, “A game-theoretic approach to apprenticeship
learning,” Annual Conference on Neural Information Processing Systems
(NIPS), vol. 20, pp. 1449–1456, 2008.

[8] U. Syed, M. Bowling, and R. Schapire, “Apprenticeship learning using
linear programming,” in International Conference on Machine Learning
(ICML). ACM, 2008, pp. 1032–1039.

[9] A. Boularias and B. Chaib-Draa, “Bootstrapping Apprenticeship Learn-
ing,” in Annual Conference on Neural Information Processing Systems
(NIPS), 2010.

[10] N. Ratliff, J. Bagnell, and M. Zinkevich, “Maximum margin planning,”
in International Conference on Machine Learning (ICML). ACM, 2006,
p. 736.

[11] N. Ratliff, D. Bradley, J. Bagnell, and J. Chestnutt, “Boosting structured
prediction for imitation learning,” Advances in Neural Information
Processing Systems, vol. 19, p. 1153, 2007.

[12] N. Ratliff, J. Bagnell, and S. Srinivasa, “Imitation learning for loco-
motion and manipulation,” in International Conference on Humanoid
Robots. IEEE, 2007, pp. 392–397.

[13] G. Neu and C. Szepesvári, “Apprenticeship learning using inverse rein-
forcement learning and gradient methods,” in Conference on Uncertainty
in Artificial Intelligence (UAI), 2007, pp. 295–302.

[14] D. Ramachandran and E. Amir, “Bayesian inverse reinforcement learn-
ing,” Urbana, vol. 51, p. 61801, 2007.

[15] U. Chajewska, D. Koller, and D. Ormoneit, “Learning an agent’s
utility function by observing behavior,” in International Conference on
Machine Learning (ICML), 2001, pp. 35–42.

[16] C. Dimitrakakis and C. Rothkopf, “Bayesian multitask inverse rein-
forcement learning,” European Workshop on Reinforcement Learning
(EWRL), 2011.

[17] C. A. Rothkopf, “Modular models of task based guided behavior,” Ph.D.
dissertation, University of Rochester, 2008.

[18] B. Ziebart, A. Maas, J. Bagnell, and A. Dey, “Maximum entropy inverse
reinforcement learning,” in AAAI Conference on Artificial Intelligence
(AAAI), 2008, pp. 1433–1438.

[19] A. Boularias, J. Kober, and Peters, “Relative entropy inverse reinforce-
ment learning,” International Conference on Automated Planning and
Scheduling (ICAPS), vol. 15, pp. 20–27, 2011.

[20] N. Aghasadeghi and T. Bretl, “Maximum entropy inverse reinforcement
learning in continuous state spaces with path integrals,” in International
Conference on Machine Learning (ICML), 2011.

[21] M. Puterman, Markov decision processes: Discrete stochastic dynamic
programming. John Wiley & Sons, Inc. New York, NY, USA, 1994.

[22] Z. Jin, H. Qian, and M. Zhu, “Gaussian processes in inverse reinforce-
ment learning,” in International Conference on Machine Learning and
Cybernetics (ICMLC), vol. 1. IEEE, 2010, pp. 225–230.

