
Moindres carrés récursifs pour l’évaluation

off-policy d’une politique avec traces d’éligibilité

Abstract : Dans le cadre des processus de décision Markoviens (MDPs), nous nous intéressons
à l’apprentissage d’une approximation linéaire de la fonction de valeur d’une politique fixe,
lorsque les données sont constituées d’une unique trajectoire générée par une autre politique,
c’est-à-dire que nous considérons le cas off-policy. Nous présentons une manière systématique
d’adapter l’ensemble des algorithmes de type moindres carrés proposés dans la littérature
dans le cas on-policy et n’utilisant pas nécessairement de traces d’éligibilité (LSTD (Boyan,
1999), LSPE) (Nedić & Bertsekas, 2003), FPKF (Choi & Roy, 2006) et BRM/GPTD (Engel,
2005)/KTD (Geist & Pietquin, 2010c)), de sorte à ce qu’ils puissent être appliqués dans le cas
off-policy avec des traces. Nous dérivons les formules pour une implémentation récursive de
ces algorithmes, étudions leur convergence asymptotique et illustrons expérimentalement leur
comportement. Si nous retrouvons les algorithmes off-policy LSTD(λ)/LSPE(λ) récemment
proposés par Yu (2010), les deux autres sont à notre connaissance nouveaux.

1 Introduction

We consider the problem of learning a linear approximation of the value function of some fixed
policy in a Markov Decision Process (MDP) framework. We focus on the situation where learning
is done from a single trajectory possibly generated by some other policy, which is also known as
off-policy learning.

Given samples, simple methods for estimating a value function are temporal difference (TD)
learning (Sutton & Barto, 1998) and Monte Carlo. TD learning with eligibility traces (Sutton &
Barto, 1998), known as TD(λ), provide a nice bridge between both TD and Monte-Carlo, and by
controlling the bias/variance trade-off (Kearns & Singh, 2000), their use can significantly speed up
learning. When the value function is approximated through a linear architecture, the depth λ of
the eligibility traces is also known to control the quality of approximation (Tsitsiklis & Van Roy,
1997). Overall, the use of these traces (and the setting of λ) often plays an important practical
role.

Only a decade ago did Precup et al. (2000) propose the first variation of TD(λ) that could
combine off-policy learning with linear approximation and eligibility traces. Much more recently,
Yu (2010) proposed off-policy LSTD(λ)/LSPE(λ), Least-Squares (LS) algorithms – LS algorithms
are usually much more efficient in terms of samples than their stochastic approximation couterparts
like TD – that also use eligibility traces.

On-policy learning (where the policy to evaluate is the same as the one that generated data)
has a much longer history in the literature; thus several on-policy LS algorithms were proposed in
the past, notably LSTD(λ) (Boyan, 1999), LSPE(λ) (Nedić & Bertsekas, 2003) that use eligibility
traces, FPKF (Choi & Roy, 2006) and GPTD (Engel, 2005)/KTD (Geist & Pietquin, 2010c) that
do not1. The first motivation of this article is to argue that it is conceptually simple to extend the
just-mentioned algorithms so that they can be also applied to the off-policy setting, while keeping
the use of eligibility traces. If this allows to rederive the off-policy LSTD(λ)/LSPE(λ) algorithms
of Yu (2010), it also allows to define two new LS algorithms. The second motivation of this work
is of algorithmic nature: we explicitely derive formulas that allow to run these new algorithms in
a recursive manner, i.e. where each sample of the trajectory can be processed on-the-fly with a
complexity quadratic in the number of features. To our knowledge, this has not even been done
for LSPE(λ).

1GPTD has been extended to the case λ = 1 (Engel et al., 2005) and KTD to λ ∈ [0, 1] (Geist & Pietquin,
2010b). However, for KTD(λ), it is not really the same traces.
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The rest of the paper is organized as follows. Section 2 introduces the background of Markov De-
cision Processes and describes the state-of-the-art algorithms for on-policy learning with recursive
LS methods. Section 3 shows how to adapt these methods so that they can both deal with the off-
policy case and use eligibility traces. The resulting algorithms are formalized, briefly commented,
and the formula for their recursive implementation is derived. Section 4 illustrates empirically the
behavior of these algorithms and Section 5 concludes and describes future work.

2 Background and state-of-the-art on-policy algorithms

A Markov Decision Process (MDP) is a tuple {S,A, P,R, γ} in which S is a finite state space
identified with 1, 2, . . . , N , A a finite action space, P ∈ P(S)S×A the set of transition probabilities,
R ∈ R

S×A the deterministic reward function and γ the discount factor. The mapping π ∈ P(A)S

is called a policy. For any policy π, let P π be the corresponding stochastic transition matrix, and
Rπ the vector of mean reward when following π, i.e. components Ea|π,s[R(s, a)]. The value V π(s)
of state s for a policy π is the expected discounted cumulative reward starting in state s and then
following the policy π:

V π(s) = Eπ

[ ∞∑

i=0

γiri|s0 = s

]

where Eπ means that the expectation is trajectories induced by policy π. The value function
satisfies the (linear) Bellman evaluation Equation:

∀s, V π(s) = Es′,a|s,π[R(s, a) + γV π(s′)]

It can be rewritten as the fixed-point of the Bellman evaluation operator: V π = T πV π where for
all V, T πV = Rπ + γP πV .

In this article, we are interested in learning an approximation of this value function V π under
some constraints. First, we assume our approximation to be linearly parameterized: V̂θ(s) = θTφ(s)
with θ ∈ R

p being the parameter vector and φ(s) the feature vector. We also want to estimate the
value function V π (or equivalently associated parameters) from a single finite trajectory generated
using a possibly different behaviorial policy π0. Let µ0 be the stationary distribution of the
stochastic matrix P0 = P π0 of the behavior policy π0 (we asumme it exists and is unique). Let D0

be the diagonal matrix of which the elements are (µ0(si))1≤i≤|S|. Let Φ be the matrix of feature
vectors: Φ = [φ(1) . . . φ(N)]T . The projection Π0 onto the space spanned by Φ with respect to the
µ0-quadratic norm has the following closed-form:

Π0 = Φ(ΦTD0Φ)−1ΦD0.

In the rest of this section, we review existing on-policy least-squares-based temporal difference
learning algorithms: in this case, the behavior and target policies π0 and π are the same so we
omit the corresponding superscripts/subscripts. We assume that a trajectory (s1, a1, r1, s2, . . . ,

sj , aj, rj , sj+1, . . . si+1) sampled according to the target policy π is available. Let us introduce the

sampled Bellman operator T̂j , defined as:

T̂j : V ∈ R
S → T̂jV = rj + γV (sj+1) ∈ R

Notice that T̂jV is an unbiased estimate of TV (sj). If values were observable, estimating the
parameter vector θ would reduce to project the value function onto the hypothesis space using
the empirical projection operator. This is the classical least-squares approach under the linear
parameterization assumption. However, values are not observed, only rewards. Nevertheless, one
can rely on temporal differences to estimate the value function.

The Least-Squares Temporal Differences (LSTD) algorithm of Bradtke & Barto (1996) aims at
finding the fixed point of the operator being the composition of the projection onto the hypothesis
space and of the Bellman operator. Otherwise speaking, it searches for the fixed point V̂θ = Π0T V̂θ,
Π0 being the just introduced projection operator. Using the available trajectory, LSTD solves the



following optimization problem:

θi = argmin
ω∈Rp

i∑

j=1

(

T̂j V̂θi − V̂ω(sj)
)2

The Least-Squares Policy Evaluation (LSPE) algorithm of Nedić & Bertsekas (2003) searches
for the same fixed point, but in an iterative way instead of directly (informally, V̂θi ≃ Π0T V̂θi−1

).
The corresponding optimization problem is:

θi = argmin
ω∈Rp

i∑

j=1

(

T̂jV̂θi−1
− V̂ω(sj)

)2

The Fixed-Point Kalman Filter (FPKF) algorithm of Choi & Roy (2006) is a least-squares
variation of the classical temporal difference learning algorithm (Sutton & Barto, 1998). Value
function approximation is treated as a supervised learning problem, and unobserved values are
bootstrapped: the unobserved value V π(sj) is replaced by the estimate T̂jV̂θj−1

. This is equivalent
to solving the following optimization problem (Choi & Roy, 2006, Sec. 1.6):

θi = argmin
ω∈Rp

i∑

j=1

(

T̂j V̂θj−1
− V̂ω(sj)

)2

Finally, the Bellman Residual Minimization (BRM) algorithm aims at minimizing the distance
between the value function and its image through the Bellman operator, ‖V − TV ‖2. Not that
when the sampled operator is used, this leads to biased estimates (see e.g. Antos et al. (2006)).
The corresponding optimization problem is as follows:

θi = argmin
ω∈Rp

i∑

j=1

(

T̂j V̂ω − V̂ω(sj)
)2

This cost function has been proposed by Baird (1995) who minimized it using a stochastic gradient
approach. It has been considered by Munos (2003) with a least-squares approach, however with
a double sampling scheme to remove the bias. The parametric Gaussian Process Temporal Dif-
ferences (GPTD) algorithm of Engel (2005) and the linear Kalman Temporal Differences (KTD)
algorithm of Geist & Pietquin (2010c) can be shown to minimize this cost using a least-squares
approach (so with bias).

All these algorithms can be summarized as minimizing the following generic cost-function:

θi = argmin
ω∈Rp

i∑

j=1

(

T̂j V̂ξ − V̂ω(sj)
)2

(1)

One of the presented approach is obtained by instantiating ξ = θi, θi−1, θj−1 or ω and solving the
corresponding optimization problem. Actually, more algorithms can be summarized under this
generic equation (Geist & Pietquin, 2010a), but this paper focuses on linear least-squares-based
approaches.

3 Extension to eligibility traces and off-policy learning

This section contains the core of our contribution: we are going to describe a systematic approach
in order to adapt the previously mentionned algorithms so that they can deal with eligibility traces
and off-policy learning. The actual formalization of the algorithms, along with the derivation of
their recursive implementation, will then follow.

Let 0 ≤ λ ≤ 1 be the eligibility factor. Using eligibility traces correspond to looking for the fixed
point of the following variation of the Bellman operator (Bertsekas & Tsitsiklis, 1996):

∀V ∈ R
S , T λV = (1− λ)

∞∑

i=0

λiT i+1V



JFPDA 2011

that makes a geometric average with parameter λ of the powers of the original Bellman operator
T . Clearly, any fixed point of T is a fixed point of T λ and vice-versa. The equivalent writings
(after some simple algebra, see e.g. Nedić & Bertsekas (2003)):

T λV = (I − λγP )−1(R+ (1− λ)γPV ) (2)

= V + (I − λγP )−1(R+ γPV − V )

lead to the following well-known temporal difference based expression

T λV (si) = V (si) + Eπ





∞∑

j=i

(γλ)j−i(rj + γV (sj+1)− V (sj))|si





where we recall that Eπ means that the expectation is done according to the target policy π. With
λ = 0, we recover the Bellman evaluation equation. With λ = 1, this is the definition of the value
function as the expected and discounted cumulative reward: T 1V (si) = Eπ[

∑∞
j=i γ

j−1rj |si].
As learning is done over a finite trajectory, it is natural to introduce the following truncated

operator T λn :

T λnV (si) = V (si) + Eπ





n∑

j=i

(γλ)j−i(rj + γV (sj+1)− V (sj))|si



 .

To use it practically, we will need to remove the dependency to the model (i.e. the expectation).
Moreover, the goal is now to learn the value function of the target policy π from a single trajectory
sampled using a different policy.

Assume again that learning is done from some trajectory (s1, a1, . . . , sj, aj , rj , sj+1, . . . si+1),
now sampled according to the known behaviour policy π0. As behaviorial and target policies are
different, it is not sufficient to remove the expectation to obtain an unbiased estimate of T λn , one
has to correct it using importance sampling (Ripley, 1987). For all s, a introduce the following
weight:

ρ(s, a) =
π(a|s)
π0(a|s) .

In our trajectory context, write

ρ
j
i =

j
∏

k=i

ρk with ρj = ρ(sj , aj)

with the convention that if j < i, ρji = 1. Now, consider the off-policy, sampled and truncated

T̂ λi,n : R
S → R operator as:

T̂ λi,nV = V (si) +

n∑

j=i

(γλ)j−i(ρji T̂jV − ρ
j−1
i V (sj))

With these corrections, it can be seen that T̂ λi,nV is an unbiased estimate of T λnV (si) (the interested
reader may consult (Precup et al., 2000; Yu, 2010) for further details).

By replacing T̂j by T̂ λj,i in the optimization problem of Equation (1), we provide a generic way
to extend most of parametric value function approximators to eligibility traces in an off-policy
manner:

θi = argmin
ω∈Rp

i∑

j=1

(

T̂ λj,iV̂ξ − V̂ω(sj)
)2

In the next subsection, by instantiating ξ to θi, θi−1, θj−1 or ω, we derive the already existing
algorithms off-policy LSTD(λ) and LSPE(λ) (Yu, 2010), and we extend two existing algorithms to
eligibility traces and to off-policy learning, that we will naturally call FPKF(λ) and BRM(λ).

Recall that a linear parameterization is chosen here, V̂ξ(si) = ξTφ(si). We adopt the following
notations:

φi = φ(si), ∆φi = φi − γρiφi+1 and ρ̃k−1
j = (γλ)k−jρk−1

j



The generic cost function to be solved is therefore:

θi = argmin
ω∈Rp

J(ω; ξ) with J(ω; ξ) =

i∑

j=1

(φTj ξ +

i∑

k=j

ρ̃k−1
j (ρkrk −∆φTk ξ)− φTj ω)2. (3)

Before deriving existing and new algorithms, as announced, some required useful lemma are pro-
vided.

3.1 Some useful lemma

The first lemma allows computing directly the inverse of a rank-one perturbated matrix.

Lemma 1 (Sherman-Morrison). Assume that A is an invertible n× n matrix and that u, v ∈ R
n

are two vectors satisfying 1 + vTA−1u 6= 0. Then:

(A+ uvT )−1 = A−1 − A−1uvTA−1

1 + vTA−1u

The second one is the Woodbury matrix identity which generalizes the Sherman-Morrison for-
mula:

Lemma 2 (Woodbury). Let A, U , C and V be matrices of correct sizes, then:

(A+ UCV )−1 = A−1 −A−1U(C−1 + V A−1U)−1V A−1

The next lemma is simply a rewriting of imbricated sums. However, it is quite important here
as it will allow stepping from the anti-causal operator T̂ λ,iπ (forward view of eligibility traces) to
the causal recursion over parameters (backward view of eligibility traces).

Lemma 3. Let f ∈ R
N×N and n ∈ N. We have:

n∑

i=1

n∑

j=i

f(i, j) =

n∑

i=1

i∑

j=1

f(j, i)

The last lemma is also a rewriting of imbricated sums:

Lemma 4. Let f ∈ R
N×N×N and n ∈ N. We have:

n∑

i=1

n∑

j=i

n∑

k=i

f(i, j, k) =

n∑

i=1

i∑

j=1

j
∑

k=1

f(k, i, j) +

n∑

i=2

i−1∑

j=1

j
∑

k=1

f(k, j, i)

3.2 Off-policy LSTD(λ)

The off-policy LSTD(λ) algorithm corresponds to instantiating Problem (3) with ξ = θi:

θi = argmin
ω∈Rp

i∑

j=1

(φTj θi +

i∑

k=j

ρ̃k−1
j (ρkrk −∆φTk θi)− φTj ω)2

This can be solved by zeroing the gradient respectively to ω:

θi = (
i∑

j=1

φjφ
T
j )−1

i∑

j=1

φj(φ
T
j θi +

i∑

k=j

ρ̃k−1
j (ρkrk −∆φTk θi))

⇔ 0 =

i∑

j=1

i∑

k=j

φj ρ̃
k−1
j (ρkrk −∆φTk θi)
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which, through Lemma 3, is equivalent to:

0 =
i∑

j=1

(

j
∑

k=1

φkρ̃
j−1
k )(ρjrj −∆φTj θi)

Introducing the (corrected) eligibility vector zj :

zj =

j
∑

k=1

φkρ̃
j−1
k =

j
∑

k=1

φk(γλ)j−k
j−1
∏

m=k

ρm = γλρj−1zj−1 + φj , (4)

one obtains the following batch estimate:

θi = (

i∑

j=1

zj∆φ
T
j )−1

i∑

j=1

zjρjrj = (Ai)
−1bi (5)

where

Ai =

i∑

j=1

zj∆φ
T
j and bi =

i∑

j=1

zjρjrj . (6)

Thanks to Lemma 1, the inverse Mi = (Ai)
−1 can be computed recursively:

Mi = (

i∑

j=1

zj∆φ
T
j )−1 = Mi−1 −

Mi−1zi∆φ
T
i Mi−1

1 + ∆φTi Mi−1zi

This can be used to derive a recursive estimate:

θi = (

i∑

j=1

zj∆φ
T
j )−1

i∑

j=1

zjρjrj = (Mi−1 −
Mi−1zi∆φ

T
i Mi−1

1 + ∆φTi Mi−1zi
)(

i−1∑

j=1

zjrjρj + ziρiri)

= θi−1 +
Mi−1zi

1 + ∆φTi Mi−1zi
(ρiri −∆φTi θi−1)

Writing Ki the gain Mi−1zi
1+∆φT

i
Mi−1zi

, this gives Alg. 1.

Algorithm 1: Off-policy LSTD(λ)

Initialization;
Initialize vector θ0 and matrix M0 ;
Set z0 = 0;

for i = 1, 2, . . . do

Observe φi, ri, φi+1 ;

Update traces ;
zi = γλρi−1zi−1 + φi ;

Update parameters ;
Ki =

Mi−1zi

1+∆φT
i
Mi−1zi

;

θi = θi−1 +Ki(ρiri −∆φTi θi−1) ;
Mi =Mi−1 −Ki(M

T
i−1∆φi)

T ;

This algorithm has been proposed and analyzed recently by Yu (2010). The author proves the
following result: if the behavior policy π0 induces an irreducible Markov chain and chooses with
positive probability any action that may be chosen by the target policy π, and if the compound
(linear) operator Ππ0

T λ has a unique fixed point2, then off-policy LSTD(λ) converges to it almost
surely. Formally, it converges to the solution θ∗ of the so-called projected fixed point equation:

Vθ∗ = Π0T
λVθ∗ . (7)

2It is not always the case, see Tsitsiklis & Van Roy (1997) or Section 4 for counter examples.



Using the expression of the projection Π0 and the form of the Bellman operator in Equation (2),
it can be that θ∗ satisfies (see Yu (2010) for details)

θ∗ = A−1b

where
A = ΦTD0(I − γP )(I − λγP )−1Φ and b = ΦTD0(I − λγP )−1R. (8)

The core of the analysis of Yu (2010) consists in showing that 1
i
Ai and 1

i
bi defined in Equation (6)

respectively converge to A and b almost surely. Precisely, the author proves the following general
result3:

Theorem 1 (Yu (2010)). Assume that the stochastic matrix P0 of the behavior policy is irreducible,
and that for all states, any action that has a non-zero probability of being chosen by the target policy
π also has a non-zero probability of being chosen by π0 (formally: ∀s, a, π(a|s) > 0⇒ π0(a|s) > 0).
Then, for any function ψ : S ×A× S → R,

1

i

i∑

j=1

zjψ(sj , aj , sj+1)
i→∞, a.s.
−−−−−−−−→ ΦTD0(I − λγP )−1Ψ

where (zi)i∈N is the sequence of eligibility vectors defined in Equation (4), and the vector/matrix
Ψ is defined in terms of its rows: ΨT = (ψ̄(1)T . . . ψ̄(n)T ) with ψ̄(i) = E[ψ(s1, a1, s2)|s1 = i, ai ∼
π0(|̇s1)].

The convergence of 1
i
Ai to A (resp. the convergence of 1

i
bi to b) is obtained for ψ(s, a, s′) =

φ(s) − γρ(s, a)φ(s′) (resp. ψ(s, a, s′) = ρ(s, a)r(s, a)). Through Equation (5), this implies the
convergence of θi to θ∗.

3.3 Off-policy LSPE(λ)

The off-policy LSPE(λ) algorithm corresponds to the instantiation ξ = θi−1 in Problem (3):

θi = argmin
ω∈Rp

i∑

j=1

(φTj θi−1 +

i∑

k=j

ρ̃k−1
j (ρkrk −∆φTk θi−1)− φTj ω)2

This can be solved by zeroing the gradient respectively to ω:

θi = (
i∑

j=1

φjφ
T
j )−1

i∑

j=1

φj(φ
T
j θi−1 +

i∑

k=j

ρ̃k−1
j (ρkrk −∆φTk θi−1))

= θi−1 + (

i∑

j=1

φjφ
T
j )−1

i∑

j=1

i∑

k=j

φj ρ̃
k−1
j (ρkrk −∆φTk θi−1)

Lemma 3 can be used (recall also the corrected eligibility vector zj):

θi = θi−1 + (
i∑

j=1

φjφ
T
j )−1

i∑

j=1

j
∑

k=1

φk ρ̃
j−1
k (ρjrj −∆φTj θi−1)

= θi−1 + (

i∑

j=1

φjφ
T
j )−1

i∑

j=1

zj(ρjrj −∆φTj θi−1)

Define the matrix Ni as follows:

Ni = (

i∑

j=1

φjφ
T
j )−1 = Ni−1 −

Ni−1φiφ
T
i Ni−1

1 + φTi Ni−1φi
(9)

3This is an equivalent rewriting of Theorem 3.3 in Yu (2010).
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where the second equality follows from Lemma 1. Let Ai and bi be defined as in the LSTD
description in Equation (6). For clarity, we restate their definition along with their recursive
writing:

Ai =
i∑

j=1

zj∆φ
T
j = Ai−1 + zi∆φ

T
i+1

bi =

i∑

j=1

zjρjrj = bi−1 + ziρiri

Therefore, the update of the parameter vector can be written as:

θi = θi−1 +Ni(bi −Aiθi−1)

Given the recursive updates of Ni, Ai and bi, this gives Alg. 2. This generalizes the LSPE(λ)

Algorithm 2: Off-policy LSPE(λ)

Initialization;
Initialize vector θ0 and matrix N0 ;
Set z0 = 0, A0 = 0 and b0 = 0;

for i = 1, 2, . . . do

Observe φi, ri, φi+1;

Update traces ;
zi = γλρi−1zi−1 + φi ;

Update parameters ;

Ni = Ni−1 −
Ni−1φiφ

T
i
Ni−1

1+φT
i
Ni−1φi

;

Ai = Ai−1 + zi∆φ
T
i ;

bi = bi−1 + ρiziri;
θi = θi−1 +Ni(bi −Aiθi−1) ;

algorithm of Nedić & Bertsekas (2003) to off-policy learning for any eligibility factor. Though
briefly mentionned by Yu (2010), this is to our knowledge the first time that the LSPE(λ) is
derived in an off-policy context along with recursive formula.

With respect to LSTD(λ), which computes θi = (Ai)
−1bi (cf Equation (5)) at each iteration,

LSPE(λ) is fundamentally recursive. Along with the almost sure convergence of 1
i
Ai and 1

i
bi to A

and b (defined in Equation (8)), it can be shown that iNi converges to N = (ΦTD0Φ)−1 (see for
instance Nedić & Bertsekas (2003)) so that, asymptotically, LSPE(λ) behaves as:

θi = θi−1 +N(b−Aθi−1) = Nb+ (I −NA)θi−1

or using the defintion of Π0, A, b (Equation (8)) and T λ (Equation (2))

Vθi = Φθi = ΦNb+ Φ(I −NA)θi−1 = Π0T
λVθi−1

.

The behavior of this sequence depends on whether the spectral radius of Π0T
λ
π is smaller than 1

or not, in other words whether the sequence is contracting or not. Thus, the analyses of Yu (2010)
and Nedić & Bertsekas (2003) (for the convergence of Ni) imply the following convergence result4:
under the assumptions required for the convergence of off-policy LSTD(λ), and the additional
assumption that Π0Tλ has spectral radius smaller than 1, LSPE(λ) also converges almost surely
to the fixed-point of the compound Π0T

λ operator.
There are two sufficient conditions that can (independently) ensure such a desired contraction

property. The first one is when one considers on-policy learning (see e.g. Nedić & Bertsekas

4Though it is not stated explicitely there, the credit of this convergence result should be given to Yu (2010),
whose analysis allows to easily conclude.



(2003), where the authors studied the on-policy case and uses this property in the proof). When
the behavior policy π0 is different from the target policy π, a sufficient condition for contraction is
that λ be close enough to 1; indeed, when λ tends to 1, the spectral radius of T λ tends to zero and
can potentially balance an expansion of the projection Π0. In the off-policy case with a sufficiently
big value of the discount factor γ, a small value of λ can make Π0T

λ expansive (see (Tsitsiklis &
Van Roy, 1997) for λ = 0) and off-policy LSPE(λ) will then diverge.

3.4 Off-policy FPKF(λ)

The off-policy FPKF(λ) algorithm corresponds to the instantiation ξ = θj−1 in Problem (3):

θi = argmin
ω∈Rp

i∑

j=1

(φTj θj−1 +

i∑

k=j

ρ̃k−1
j (ρkrk −∆φTk θj−1)− φTj ω)2

This can be solved by zeroing the gradient respectively to ω:

θi = Ni

i∑

j=1

φj(φ
T
j θj−1 +

i∑

k=j

ρ̃k−1
j (ρkrk −∆φTk θj−1))

where Ni is the matrix introduced for LSPE(λ) in Equation (9). For clarity, we restate its definition
here and its recursive writing:

Ni = (

i∑

j=1

φjφ
T
j )−1 = Ni−1 −

Ni−1φiφ
T
i Ni−1

1 + φTi Ni−1φi
.

Using Lemma 3, one obtains:

θi = Ni(
i∑

j=1

φjφ
T
j θj−1 +

i∑

j=1

j
∑

k=1

φkρ̃
j−1
k (ρjrj −∆φTj θk−1))

With respect to the previously described algorithms, the difficulty here is that on the right side
there is a dependence with all the previous terms θk−1 for 1 ≤ k ≤ i. Using the symmetry of the
dot product ∆φTj θk−1 = θTk−1∆φj (since they are vectors), it is still possible to write a recursive
algorithm by introducing the trace matrix Zj that integrates the subsequent values of θk as follows:

Zj =

j
∑

k=1

ρ̃
j−1
k φkθ

T
k−1 = Zj−1 + γλρj−1φjθ

T
j−1

With this notation we obtain:

θi = Ni(

i∑

j=1

φjφ
T
j θj−1 +

i∑

j=1

(zjρjrj − Zj∆φj)

Using Lemma 1 for Ni and a few algebraic manipulations, we end up with:

θi = θi−1 +Ni(ziρiri − Zi∆φi)

This is the parameters update as provided in Alg. 3. As LSPE(λ), this algorithm is fundamentally
recursive. It generalizes the FPKF algorithm of Choi & Roy (2006) (originally only introduced
without traces in the on-policy case) to eligibility traces as well as to off-policy learning. Due to
its much more involved form (with the matrix trace Zj integrating the values of all the values
θk from the start), we have not been able to obtain a formal analysis of FPKF(λ), even in the
on-policy case. We however conjecture that off-policy FPKF(λ) has the same asymptotic behavior
as LSPE(λ).

3.5 Off-policy BRM(λ)

The off-policy BRM(λ) algorithm corresponds to the instantiation ξ = ω in Problem (3):
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Algorithm 3: Off-policy FPKF(λ)

Initialization;
Initialize vector θ0 and matrix N0 ;
Set z0 = 0 and Z0 = 0;

for i = 1, 2, . . . do

Observe φi, ri, φi+1;

Update traces ;
zi = γλρi−1zi−1 + φi ;
Zi = γλρi−1Zi−1 + φiθ

T
i−1;

Update parameters ;

Ni = Ni−1 −
Ni−1φiφ

T
i
Ni−1

1+φT
i
Ni−1φi

;

θi = θi−1 +Ni(ziρiri − Zi∆φi) ;

θi = argmin
ω∈Rp

i∑

j=1

(φTj ω +
i∑

k=j

ρ̃k−1
j (ρkrk −∆φTk ω)− φTj ω)2 = argmin

ω∈Rp

i∑

j=1

(
i∑

k=j

ρ̃k−1
j (ρkrk −∆φTk ω))2

Let us define ψj→i and zj→i as:

ψj→i =
i∑

k=j

ρ̃k−1
j ∆φk and zj→i =

i∑

k=j

ρ̃k−1
j ρkrk

Therefore, this yields to the following batch estimate:

θi = argmin
ω∈Rp

i∑

j=1

(zj→i − ψTj→iω)2 = (Ãi)
−1b̃i

where

Ãi =

i∑

j=1

ψj→iψ
T
j→i and b̃i =

i∑

j=1

ψj→izj→i

To obtain a recursive formula, these two sums have to be reworked through Lemma 4. Let us first
focus on the latter:

i∑

j=1

ψj→izj→i =

i∑

j=1

i∑

k=j

i∑

m=j

ρ̃k−1
j ∆φk ρ̃

m−1
j ρmrm

=

i∑

j=1

j
∑

k=1

k∑

m=1

ρ̃j−1
m ∆φj ρ̃

k−1
m ρkrk +

i∑

j=2

j−1
∑

k=1

k∑

m=1

ρ̃k−1
m ∆φk ρ̃

j−1
m ρjrj

Let us write yk as:

yk =
k∑

m=1

(ρ̃k−1
m )2 = 1 + (γλρk−1)2yk−1.

We have that:
k∑

m=1

ρ̃j−1
m ρ̃k−1

m = ρ̃
j−1
k yk.

Therefore:
i∑

j=1

ψj→izj→i =

i∑

j=1

j
∑

k=1

ρ̃
j−1
k yk∆φjρkrk +

i∑

j=2

j−1
∑

k=1

ρ̃
j−1
k yk∆φkρjrj .



Let us introduce zj and ∆j as:

zj =

j
∑

k=1

ρ̃
j−1
k ykρkrk = γλρj−1zj−1 + ρjrjyj

∆j =

j
∑

k=1

ρ̃
j−1
k yk∆φk = γλρj−1∆j−1 + yj∆φj

Using these notations, and with the convention that z0 = 0 and ∆0 = 0, one can write:

i∑

j=1

ψj→izj→i =

i∑

j=1

(∆φjρjrjyj + γλρj−1(∆φjzj−1 + ρjrj∆j−1))

Similarly, on can show that:

i∑

j=1

ψj→iψ
T
j→i =

i∑

j=1

(∆φj∆φ
T
j yj + γλρj−1(∆φj∆

T
j−1 + ∆j−1∆φTj ))

Let uj and vj denote:

uj =
√
yj∆φj and vj =

γλρj−1√
yj

∆j−1

We have that (I2 denotes the 2× 2 identity matrix):

i∑

j=1

ψj→iψ
T
j→i =

i∑

j=1

((uj + vj)(uj + vj)
T − vjvTj )

=

i−1∑

j=1

ψj→iψ
T
j→i +

(
ui + vi vi

)

︸ ︷︷ ︸

=Ui

I2

(
(ui + vi)

T

−vTi

)

︸ ︷︷ ︸

=Vi

We can apply the Woodbury identity given in Lemma 2:

Ci =





i∑

j=1

ψj→iψ
T
j→i





−1

=





i−1∑

j=1

ψj→izj→i + UiI2Vi





−1

= Ci−1 − Ci−1Ui (I2 + ViCi−1Ui)
−1
ViCi−1

The other sum can also be reworked:

Si =

i∑

j=1

ψj→izj→i =

i∑

j=1

∆φjrjyj + γλ (∆j−1rj + ∆φjzj−1)

= Si−1 + ∆φiriyi + γλ (∆i−1ri + ∆φizi−1) = Si−1 + Ui

(√
yiri + γλ√

yi
zi−1

− γλ√
yi
zi−1

)

︸ ︷︷ ︸

=Wi

Finally, the recursive BRM(λ) estimate can be computed as follows:

θi = CiSi = θi−1 + Ci−1Ui (I2 + ViCi−1Ui)
−1

(Wi − Viθi−1)

The matrix to be inverted being a 2 × 2 matrix, it admits a straightforward analytical solution.
This gives BRM(λ) as provided in Alg. 4.

As BRM(λ) builds a linear systems of which it updates the solution recursively, it resembles
LSTD(λ). However, the system it builds is different. Despite the closeness of GPTD, KTD and
BRM, their extension to eligibility traces are different: GPTD(λ) (Engel, 2005), KTD(λ) (Geist &
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Algorithm 4: Off-policy BRM(λ)

Initialization;
Initialize vector θ0 and matrix C0 ;
Set y0 = 0, ∆0 = 0 and z0 = 0;

for i = 1, 2, . . . do

Observe φi, ri, φi+1;

Pre-update traces ;
yi = (γλρi−1)2yi−1 + 1 ;

Compute ;

Ui =
(
√
yi∆φi +

γλρi−1√
yi

∆i−1
γλρi−1√
yi

∆i−1

)

;

Vi =
(
√
yi∆φi +

γλρi−1√
yi

∆i−1 −
γλρi−1√
yi

∆i−1

)T

;

Wi =
(
√
yiρri +

γλρi−1√
yi
zi−1 −

γλρi−1√
yi
zi−1

)T

;

Update parameters ;
θi = θi−1 + Ci−1Ui (I2 + ViCi−1Ui)

−1 (Wi − Viθi−1) ;
Ci = Ci−1 −Ci−1Ui (I2 + ViCi−1Ui)

−1
ViCi−1 ;

Post-update traces ;
∆i = (γλρi−1)∆i−1 + ∆φiyi ;
zi = (γλρi−1)zi−1 + riρiyi ;

Pietquin, 2010b) and the provided BRM(λ) are different algorithms. Basically, GPTD(λ) mimics
the LSTD(λ) algorithms and KTD(λ) uses a different Bellman operator5.

We now provide some analysis for this new algorithm. We have a sufficient condition for proving
the almost sure convergence of this algorithm. Without loss of generality (and in order to slightly
simplify our result), we have restricted the analysis to the case where the reward function does
not depend on the action, and thus can be written as a vector R of size n (in the algorithm all the
terms ρjrj are then simply replaced by rj).

Theorem 2. Assume that the stochastic matrix P0 of the behavior policy is irreducible and has
stationary distribution µ0. Further assume that there exists a coefficient β < 1 such that

∀(s, a), λγρ(s, a) ≤ β, (10)

then 1
i
Ãi and 1

i
b̃i respectively converge almost surely to

Ã = ΦT
[
D − γDP − γPTD + γ2D′ + S(I − γP ) + (I − γPT )ST

]
Φ

b̃ = Φ
[
(I − γPT )QTD + S

]
R

where we wrote:

D = diag
(
(I − (λγ)2P̃T )−1µ0

)
Q = (I − λγP )−1

D′ = diag
(
P̃T (I − (λγ)2P̃T )−1µ0

)
S = λγ(DP − γD′)Q

and where P̃ is the matrix of which the coordinates are p̃ss′ =
∑

a π(s, a)ρ(s, a)T (s, a, s′). As a
consequence the BRM(λ) algorithm converges with probability 1 to Ã−1b̃.

The assumption given by Equation (10) trivially holds in the on-policy case (in which ρ(s, a) = 1
for all (s, a)) and in the off-policy case when λγ is sufficiently small with respect to the mismatch
between policies. The matrix P̃ , which is in general not a stochastic matrix, can have a spectral
radius bigger than 1; Equation (10) ensures that (λγ)2P̃ has spectral radius smaller than β so that
D and D′ are well defined. Finally, note that there is probably no hope to completely remove such

5Actually, the corresponding loss is (T̂ 0
j,i
V̂ (ω)− V̂ω(sj) + γλ(T̂ 1

j+1,iV̂ (ω)− V̂ω(sj+1)))2. With λ = 0 it gives T̂ 0
j,i

and with λ = 1 it provides T̂ 1
j,i



an assumption since by making λγ big enough, one may force the spectral radius of (λγ)2P̃ to be
as close as one may want to 1, which would make Ã and b̃ diverge.

The proof of this Theorem mimicks that of Proposition 4 in Bertsekas & Yu (2009) and is detailed
in the Appendix. The overall arguments are the following: Equation (10) implies that the traces
can be truncated at some depth l, of which the influence on the potential limit of the algorithm
vanishes when l tends to ∞. For all l, the l-truncated version of the algorithm can easily be
analyzed through the ergodic theorem for Markov chains. Making l tend to ∞ allows to tie the
convergence of the original arguments to that of the truncated version. Eventually, the formula
for the limit of the truncated algorithm is computed and one derives the limit.

The fundamental idea behind the Bellman Residual approach is to address the computation of
the fixed point of T λ differently from the previous methods. Instead of computing the projected
fixed point as in Equation (7), one considers the overdetermined system:

Φθ ≃ T λΦθ
⇔ Φθ ≃ (I − λγP )−1(R + (1− λ)γPΦθ)

⇔ Φθ ≃ QR+ (1− λ)γPQΦθ

⇔ Ψθ ≃ QR

with Ψ = Φ− (1−λ)γPQΦ, and solve it in a Least-Squares sense, that is by computing θ∗ = Ā−1b̄

with Ā = ΨTΨ and b̄ = ΨTQR. One of the motivation for this approach is that, contrary to the
matrix A of LSTD/LSPE/FPKF, Ā is inversible for all values of λ, and one can always guarantee
a finite error bound with respect to the best projection (see Schoknecht (2002); Yu & Bertsekas
(2008); Scherrer (2010)). If the goal of BRM(λ) is to compute Ā and b̄ from samples, what it
actually computes (Ã and b̃) will in general be biased because it is based on a single trajectory6.
Such a bias adds an uncontrolled variance term to Ā and b̄ (see Antos et al. (2006)), of which an
interesting consequence is that Ã stays inversible. More precisely, there are two sources of bias in
the estimation: one results from the non Monte carlo evaluation (when λ < 1) and the other from
the use of the same importance sampling factors (as soon as one considers off-policy). Indeed, the
interested reader may check that in the on-policy case, and when λ tends to 1, the bias of Ã and
b̃ both tend to 0.

4 Experiments

In this section, we illustrate experimentally the behavior of all the algorithms we have described so
far. In a first set of experiments, we have considered random Markov chains involving 3 states and
2 actions (for each action, rewards are uniform random vectors on (0, 1)3, transition probabilities
are random uniform matrices on (0, 1)3×3) normalized so that the probabilities sum to 1) and
projections onto random spaces of dimension 2 (induced by random uniform matrices Φ of size
3 × 2). The discount factor is γ = 0.99. For each experiment, we have run all algorithms (plus
TD(λ) with stepsize αt = 1

t+1 ) 50 times with initial matrix (M0, N0, C0) equal to7 100I, with
θ0 = 0 and during 100, 000 iterations. For each of these 50 runs, the different algorithms share the
same samples, that are generated by a random uniform policy π0 (i.e. that chooses each action with
probability 0.5). We consider two situations: on-policy, where the policy to evaluate is π = π0,
and off-policy, where the policy to evaluate is random uniform. In the curves we are about to
describe, we display on the abscissa the iteration number and on the ordinate the median value
of the distance (quadratic, weighted by the stationary distribution of P ) between the computed
value Φθ and the real value V = (I − γP )−1R (i.e. the lower the better).

For each of the two situations (on- and off-policy), we present the same data in two ways. To
appreciate the influence of λ, we display the curves on one graph per algorithm with different values
of λ (Figures 1 and 2). To compare the algorithms for solving the Bellman equation V = TλV , we

6It is possible to remove the bias when λ = 0 by using double samples. However, in the case where λ > 0, the
possibility to remove the bias seems much more difficult: the natural solution involves generating an infinite number
of trajectories.

7This matrix, which acts as an L2 regularization, is used to avoid numerical instabilities at the beginning of the
algorithms. The bigger the value, the smaller the influence.
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show on one graph per value of λ the performance of the different algorithms (Figures 3 and 4).
From these experiments, we make the following observations:

• In the on-policy setting: LSTD and LSPE have similar performance and convergence speed
for all values of λ. They tend to converge much faster than FPKF and TD. BRM is usu-
ally in between LSTD/LSPE and FPKF/TD, though for small values of λ, the bias seems
significative. When λ increases, the difference between all algorithms (except TD) vanish
(for λ = 1 they all behave the same, which since the influence of the choice ξ vanishes in
Equation (3)).

• In the off-policy setting: LSTD and LSPE still share the same behavior. The drawbacks of
the other algorithms are amplified with respect to the on-line situation, in particular the bias
of BRM may be big even for rather big values of λ. When λ tends to 1, the performance
of FPKF can catch that of LSTD/LSPE while BRM may still have a significative bias (this
corresponds to situations where the assumption of Equation (10) of Theorem 2 does not
hold).

Eventually, we have run two other sets of experiments, where we consider an MDP and a projec-
tion due to Tsitsiklis & Van Roy (1997), in order to show the numerical difficulties that may arise
when solving the projected fixed point Equation (7). In the first experiment one sets λγ such that
Π0T

λ is expansive; as expected one sees (see Figure 5) that LSPE and FPKF both diverge. In the
latter experiment, one sets λγ so that the spectral radius of Π0T

λ is 1 (so that A is singular), and
in this case LSTD also diverges (see Figure 6). In both situations, BRM gives better results.

5 Conclusion and future work

In this paper, we have considered Least Squares algorithms for approximating the value of some
fixed policy in an MDP context. Starting from the on-policy case with no trace, we recalled that
several algorithm (LSTD, LSPE, FPKF and BRM) optimize similar cost functions. By substituing
the original Bellman operator by an operator that deals with traces and off-policy samples, one
naturally rederive off-policy trace-based versions of LSTD and LSPE, and propose extensions of
FPKF and BRM. With respect to the original algorithm FPKF proposed by Choi & Roy (2006)
and BRM(0), the introduction of eligibility traces leads to a significant increase of performance.

To sum up, the first (conceptual) contribution of this paper is to provide a unified view on existing
algorithms, which naturally leads to new algorithms. For all these algorithms, we derived recursive
formulas so that they can process data on the fly and this constitutes our second (algorithmic)
contribution. We have recalled the essence of the arguments proving for the almost sure convergence
of LSTD(λ)/LSPE(λ), which are originally due to Yu (2010). We have provided an original analysis
of BRM, which constitutes a third (theoretical) contribution. The analysis of FPKF(λ), which is
still lacking, represents a natural interesting future work. The experiments we have run illustrate
our analysis, notably the potential divergence of LSPE/FPKF/LSTD. In such situations, BRM,
which is based on a well-defined problem, seems more reliable. Better controlling its inherent bias
constitutes another (difficult) research direction.
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Nedić A. & Bertsekas D. P. (2003). Least Squares Policy Evaluation Algorithms with Linear

Function Approximation. Discrete Event Dynamic Systems: Theory and Applications, 13, 79–
110.

Precup D., Sutton R. S. & Singh S. P. (2000). Eligibility Traces for Off-Policy Policy
Evaluation. In Proceedings of the Seventeenth International Conference on Machine Learning
(ICML 00), p. 759–766, San Francisco, CA, USA: Morgan Kaufmann Publishers Inc.

Ripley B. D. (1987). Stochastic Simulation. Wiley & Sons.
Scherrer B. (2010). Should one compute the Temporal Difference fix point or minimize the

Bellman Residual? The unified oblique projection view. In 27th International Conference on
Machine Learning - ICML 2010, Häıfa, Israël.
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Figure 1: Influence of λ, on-policy
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Figure 2: Influence of λ, off-policy
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Figure 3: Comparison of the algorithms, on-policy
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Figure 4: Comparison of the algorithms, off-policy
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Figure 5: Pathological situation where LSPE and FPKF diverge (while LSTD converges)
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Figure 6: Pathological situation where LSPE, FPKF and LSTD all diverge.



Appendix: Proof of Theorem 2 (Convergence of BRM(λ))

The proof of Theorem 2, which follows the general idea of that of Proposition 4 Bertsekas & Yu
(2009) is done in 2 steps. First we argue that the limit of the sequence is linked to that of an
alternative algorithm for which one cuts the traces at a certain depth l. Then, we show that for
all depth l, this alternative algorithm converges almost surely, explicitely compute its limit, and
make l tend to infinity to obtain the limit of BRM(λ).

We will only show that 1
i
Ãi tends to Ã. The argument is similar for 1

i
bi → b̃. Consider the

following l-truncated version of the algorithm based on the following alternative traces (we here
limit the “memory” of the traces to a size l):

yk,l =
k∑

m=max(1,k−l+1)

(ρ̃k−1
m )2

∆j,l =

j
∑

k=max(1,j−l+1)

ρ̃
j−1
k yk,l∆φk

and update the following matrix:

Ãi,l = Ãi−1,l + ∆φi∆φ
T
i yi,l + ρ̃i−1(∆φi∆

T
i−1,l + ∆i−1,l∆φ

T
i ).

The assumption in Equation (10) implies that ρ̃j−1
i ≤ βj−i, therefore it can be seen that for all k,

|yk,l − yk| =
max(0,k−l)
∑

m=1

(ρ̃k−1
m )2 ≤

max(0,k−l)
∑

m=1

β2(k−m) ≤ β2l

1− β2
= ǫ1(l)

where ǫ1(l) tends to 0 when l tends to infinity. Similarly, using the fact that yk ≤ 1
1−β2 and writing

K = maxs,s′‖Φ(s)− γΦ(s′)‖∞, one has for all j,

‖∆j,l −∆j‖∞ ≤
max(0,j−l)
∑

k=1

ρ̃
j−1
k ‖yk∆φk‖∞ +

j
∑

k=max(1,j−l+1)

ρ̃
j−1
k |yk,l − yk|‖∆φk‖∞

≤
max(0,j−l)
∑

k=1

ρ̃
j−1
k

1

1− β2
K +

j
∑

k=max(1,j−l+1)

ρ̃
j−1
k

β2l

1− β2
K

≤ βl

1− β
1

1− β2
K +

1

1− β
β2l

1− β2
K = ǫ2(l)

where ǫ2(l) also tends to 0. Then, it can be seen that:

‖Ãi,l − Ãi‖∞ =
∥
∥Ãi−1,l − Ãi−1 + ∆φi∆φ

T
i (yi,l − yi)

+ ρ̃i−1(∆φi(∆
T
i−1,l −∆Ti−1) + (∆i−1,l −∆i−1)∆φTi )

∥
∥
∞

≤ ‖Ãi−1,l − Ãi−1‖∞ + ‖∆φi∆φTi ‖∞|yk,l − yk|+ 2β‖∆φi‖∞‖∆i−1,l −∆i‖∞
≤ ‖Ãi−1,l − Ãi−1‖∞ +K2ǫ1(l) + 2βKǫ2(l)

and, by a recurrence on i, one obtains

∥
∥
∥
∥

Ãi,l

i
− Ãi

i

∥
∥
∥
∥
∞
≤ ǫ(l)

where ǫ(l) tends to 0 when l tends to infinity. This implies that:

lim inf
l→∞

Ãi,l

i
− ǫ(l) ≤ lim inf

l→∞

Ãi

i
≤ lim sup

l→∞

Ãi

i
≤ lim sup

l→∞

Ãi,l

i
+ ǫ(l).

In other words, one can see that limi→∞
Ãi
i

and liml→∞ limi→∞
Ãi,l
i

are equal if the latter exists. In
the remaing of the proof, we show that the latter limit indeed exists and we compute it explicitely.
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Let us fix some l and let us consider the sequence (
Ãi,l
i

). At some index i, yi,l depends only on
the last l samples, while ∆i,l depends on the same samples and the last l values of yj,l, thus on the
last 2l samples. It is then natural to view the computation of Ãi,l, which is based on yi,l, ∆i−1,l

and ∆φi = φi − γρiφi+1, as being related to a Markov chain of which the states are the 2l + 1
consecutive states of the original chain (si−2l, . . . , si, si+1). Write E0 the expectation with respect
to its stationary distribution. By the Markov chain Ergodic Theorem, we have with probability 1:

lim
i→∞

Ãi,l

i
= E0

[
∆φ2l∆φ

T
2ly2l,l + λγρ2l−1(∆φ2l∆

T
2l−1,l + ∆2l−1,l∆φ

T
2l)
]
. (11)

Let us now explicitely compute this expectation. Write xi the indicator vector (of which the kth

coordinate equals 1 when the state at time i is k and 0 otherwise). One has the following relations:
φi = ΦTxi. Let us first look at the left part of the above limit:

E0

[
∆φ2l∆φ

T
2ly2l,l

]
= E0

[
(φ2l − γρ2lφ2l+1)(φ2l − γρ2lφ2l+1)T y2l,l

]

= E0

[

ΦT (x2l − γρ2lx2l+1)(x2l − γρ2lx2l+1)TΦ

(
2l∑

m=l+1

(λγ)2(2l−m)(ρ2l−1
m )2

)]

= ΦT

{
2l∑

m=l+1

(λγ)2(2l−m)E0

[
(ρ2l−1
m )2(x2l − γρ2lx2l+1)(x2l − γρ2lx2l+1)T

]

}

Φ

= ΦT

{
2l∑

m=l+1

(λγ)2(2l−m)E0

[
(Xm,2l,2l − γXm,2l,2l+1 − γXm,2l+1,2l + γ2Xm,2l+1,2l+1)

]

}

Φ

where we used the definiton ρ̃k−1
j = (λγ)k−jρk−1

j and the notation Xm,i,j = ρi−1
m ρj−1

m xix
T
j . To

finish the computation, we will mainly rely on the following Lemma:

Lemma 5 (Some identities). Let P̃ be the matrix of which the coordinates are p̃ss′ =
∑

a π(s, a)ρ(s, a)T (s, a, s′),
which is in general not a stochastic matrix. Let µ0 be the stationary distribution of the behavior
policy π0. Write D̃i = diag

(
(P̃T )iµ0

)
. Then

∀m ≤ i, E0[Xm,i,i] = D̃i−m

∀m ≤ i ≤ j, E0[Xm,i,j ] = D̃i−mP
j−i

∀m ≤ j ≤ i, E0[Xm,i,j ] = (PT )j−iD̃i−m

Proof. We first observe that:

E0[Xm,i,i] = E0[(ρi−1
m )2xix

T
i ]

= E0[(ρi−1
m )2 diag(xi)]

= diag
(
E0[(ρi−1

m )2xi
)

To provide the identity, we will thus simply provide a proof by recurrence that E0[(ρi−1
m )2xi] =

(P̃T )m−iµ0. For i = m, we have E0[xm] = µ0. Now suppose the relation holds for i and let us
prove it for i+ 1.

E0[(ρim)2xi+1] = E0

[
E0[(ρim)2xi+1|Fi]

]

= E0

[
E0[(ρi−1

m )2(ρi)
2xi+1|Fi]

]

= E0

[
(ρi−1
m )2E0[(ρi)

2xi+1|Fi]
]
.

Write Fi the realization of the process until time i. Recalling that si is the state at time i and xi
is the indicator vector corresponding to si, one has for all s′:

E0[(ρi)
2xi+1(s′)|Fi] =

∑

a

π0(si, a)ρ(si, a)2T (si, a, s
′)

=
∑

a

π(si, a)ρ(si, a)T (si, a, s
′)

= p̃si,s′

= [P̃Txi](s
′).



As this is true for all s′, we deduce that E0[(ρi)
2xi+1|Fi] = P̃Txi and

E0[(ρim)2xi+1] = E0[(ρi−1
m )2P̃Txi]

= P̃TE0[(ρi−1
m )2P̃Txi]

= P̃T (P̃T )iµ0

= (P̃T )i+1µ0

which concludes the proof by recurrence.
Let us consider the next identity. For i ≤ j,

E0[ρi−1
m ρj−1

m xix
T
j ] = E0[E0[ρi−1

m ρj−1
m xix

T
j |Fi]]

= E0[(ρi−1
m )2xiE0[ρj−1

i xTj |Fi]]
= E0[(ρi−1

m )2xix
T
i P
j−i]

= diag
(
(P̃T )m−iµ0

)
P j−i.

Eventually, the last identity is obtained by considering Ym,i,j = XTm,j,i.

Thus, coming back to our calculus,

E0

[
∆φ2l∆φ

T
2ly2l,l

]
= ΦT

{
2l∑

m=l+1

(λγ)2(2l−m)
(
D̃2l−m − γD̃2l−mP − γPT D̃2l−m + γ2D̃2l+1−m

)

}

Φ

= ΦT (Dl − γDlP − γPTDl + γ2D′l)Φ (12)

with Dl =

l−1∑

j=0

(λγ)2jD̃j , and D′l =

l−1∑

j=0

(λγ)2jD̃j+1.

Similarly, the second term on the right side of Equation (11) satisfies:

E0

[
ρ2l−1∆2l−1,l∆φ

T
2l

]
= E0

[

ρ2l−1

2l−1∑

k=l

ρ̃
2l−2
k yk,l∆φk∆φ

T
2l

]

= E0

[
2l−1∑

k=l

(λγ)2l−1−k
ρ

2l−1
k

(
k∑

m=k−l+1

(ρ̃k−1
m )2

)

ΦT (xk − γρkxk+1)(x2l − γρ2lx2l+1)TΦ∆φT2l

]

= ΦT

(
2l−1∑

k=l

(λγ)2l−1−k
k∑

m=k−l+1

(λγ)2(k−m)
E0

[
ρ

2l−1
m ρ

k−1
m (xk − γρkxk+1)(x2l − γρ2lx2l+1)T

]

)

Φ

= ΦT

(
2l−1∑

k=l

(λγ)2l−1−k
k∑

m=k−l+1

(λγ)2(k−m)
E0

[
Xm,k,2l − γXm,k+1,2l − γXm,k,2l+1 + γ2

Xm,k+1,2l+1

]

)

Φ

= ΦT

(
2l−1∑

k=l

(λγ)2l−1−k
k∑

m=k−l+1

(λγ)2(k−m)
(
D̃k−mP

2l−k
− γD̃k+1−mP

2l−k−1
− γD̃k−mP

2l+1−k + γ2
D̃k+1−mP

2l−k
)

)

Φ

= ΦT

(
2l−1∑

k=l

(λγ)2l−1−k
k∑

m=k−l+1

(λγ)2(k−m)
(
D̃k−mP

2l−k(I − γP )− γD̃k+1−mP
2l−1−k(I − γP )

)

)

Φ

= ΦT

(
2l−1∑

k=l

(λγ)2l−1−k
k∑

m=k−l+1

(λγ)2(k−m)
(
D̃k−mP − γD̃k+1−m

)
P

2l−1−k(I − γP )

)

Φ

= ΦT

(
2l−1∑

k=l

(λγ)2l−1−k
(
DlP − γD

′
l

)
P

2l−1−k(I − γP )

)

Φ

= ΦT
(
DlP − γD

′
l

)
Ql(I − γP )Φ

with Ql =

l−1∑

j=0

(λγP )j.
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Gathering this and Equation (12), we see that the limit of
Ai,l
i

expressed in Equation (11) equals:

ΦT
[
Dl − γDlP − γPTDl + γ2D′l + λγ

(
(DlP − γD′l)Ql(I − γP ) + (I − γPT )QTl (PTDl − γD′l)

)]
Φ.

When l tends to infinity, Ql tends to Q = (I − λγP )−1. The assumption of Equation (10) ensures
that (λγ)P̃ has spectral radius smaller than 1, and thus when l tends to infinity, Dl tends to
D = diag

(
(I − (λγ)2P̃T )−1µ0

)
and D′l to D′ = diag

(
P̃T (I − (λγ)2P̃T )−1µ0

)
. In other words,

liml→∞ limi→∞
Ãi,l
i

exists with probability 1 and equals:

ΦT
[
D − γDP − γPTD + γ2D′ + λγ

(
(DP − γD′)Q(I − γP ) + (I − γPT )QT (PTD − γD′)

)]
Φ.

Eventually, this shows that limi→∞
Ãi
i

exists with probability 1 and shares the same value.

A similar reasoning allows to show that limi→∞
b̃i
i

exists and equals

Φ
[
(I − γPT )QTD + λγ(DP − γD′)Q

]
r.


